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Abstract In this paper, we introduce the concept of P-difference varieties and study the properties of toric

P-difference varieties. Toric P-difference varieties are analogues of toric varieties in difference algebraic geome-
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category of affine P [x]-semimodules with P [x]-semimodule morphisms. Moreover, there is a one-to-one corre-

spondence between the irreducible invariant P-difference subvarieties of an affine toric P-difference variety and

the faces of the corresponding affine P [x]-semimodule. We also define abstract toric P-difference varieties by

gluing affine toric P-difference varieties. The irreducible invariant P-difference subvarieties-faces correspondence

is generalized to abstract toric P-difference varieties. By virtue of this correspondence, a divisor theory for

abstract toric P-difference varieties is developed.
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1 Introduction

Difference algebra and difference algebraic geometry [1, 9, 12, 20] were founded by Ritt and Doob [18],

and Cohn [1], who aimed to study algebraic difference equations as algebraic geometry to polynomial

equations. The motivation of this paper is to develop a divisor theory for toric difference varieties.

Toric varieties are very important objects of study in algebraic geometry, since they have deep connec-

tions with the theory of polytopes, symplectic geometry and mirror symmetry, and have applications in

many other fields such as physics, coding theory, algebraic statistics and geometric modeling [3, 4, 7, 17].

Toric difference varieties are analogues of toric varieties in difference algebraic geometry and were first

studied by Gao, Huang, Wang and Yuan in [5], since toric difference varieties establish a connection

between difference Chow forms [14] and sparse difference resultants [13].

Simply speaking, an affine toric difference variety is an affine difference variety which can be param-

eterized by monomials, or equivalently, is an irreducible affine difference variety containing a difference

torus as a Cohn open subset such that the group action of the difference torus on itself extends to a

difference algebraic group action on the affine difference variety. In the paper [5], many basic properties

of affine toric difference varieties were characterized in terms of affine N[x]-semimodules. Actually, the
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category of affine toric difference varieties with toric morphisms is antiequivalent to the category of affine

N[x]-semimodules with N[x]-semimodule morphisms.

In algebraic geometry, the divisor theory is a very useful tool to study the properties of algebraic

varieties [3, 8]. However, the divisor theory for toric difference varieties defined in [5] does not behave

well. The main obstacle is that we cannot define valuation maps on the difference coordinate rings of

these toric difference varieties. To overcome this obstacle and develop a divisor theory for toric difference

varieties, we will introduce a new generalization of toric varieties in difference algebraic geometry, i.e.

toric P-difference varieties.

The notion of P-difference varieties is a generalization of the notion of classical difference varieties by

admitting variables of the defining difference polynomials with negative degrees in some sense. More

concretely, we define an order on Z[x] as follows: f =
∑p
i=0 aix

i > g =
∑p
i=0 bix

i if and only if there

exists an integer s such that ai = bi for s + 1 6 i 6 p and as > bs. Let P [x] = {f ∈ Z[x] | f > 0}. For

g =
∑s
i=0 cix

i ∈ Z[x], we write ag =
∏s
i=1(σi(a))ci for a 6= 0 in a difference field, i.e., a field equipped

with an endomorphism σ, and set 0g = 0 for g ∈ P [x] \ {0}. The P [σ]-polynomial ring k{y1, . . . , ym}P [σ]

over a difference field k is the polynomial ring in the variables ygi , i = 1, . . . ,m, g ∈ P [x] \ {0}, endowed

with a difference algebra structure. An element in k{y1, . . . , ym}P [σ] is called a P-difference polynomial.

An affine P-difference variety over k is the zero sets defined by a set of P-difference polynomials, which

is a functor from the category of difference field extensions of k to the category of sets. Now we can

say that an affine toric P-difference variety is an affine P-difference variety which can be parameterized

by monomials. As in the algebraic case, there is a difference algebraic group action on an affine toric

P-difference variety. Actually, an affine toric P-difference variety is an irreducible affine P-difference

variety containing a difference torus as an open subset such that the action of the difference torus on

itself extends to a difference algebraic group action on the affine P-difference variety.

Every affine toric P-difference variety corresponds to an affine P [x]-semimodule. It turns out that many

properties of affine toric P-difference varieties can be described in terms of affine P [x]-semimodules. Ac-

tually, the category of affine toric P-difference varieties with toric morphisms is antiequivalent to the

category of affine P [x]-semimodules with P [x]-semimodule morphisms. Since there is a difference alge-

braic group action of the difference torus on a toric P-difference variety, we obtain irreducible invariant

P-difference subvarieties and orbits under the action of the difference torus. We establish a one-to-one

correspondence between the irreducible invariant P-difference subvarieties of an affine toric P-difference

variety and the faces of the corresponding affine P [x]-semimodule and a one-to-one correspondence be-

tween the difference torus orbits of an affine toric difference variety and the faces of the corresponding

affine P [x]-semimodule.

A fan is defined to be a finite set of affine P [x]-semimodules which satisfies certain compatible con-

ditions. We further define the abstract toric P-difference variety associated with a fan by gluing affine

toric P-difference varieties along open subsets. As examples, projective toric P-difference varieties de-

fined by Z[x]-lattice points are abstract toric P-difference varieties. The irreducible invariant P-difference

subvarieties-faces correspondence still applies to abstract toric P-difference varieties constructed from

fans. By virtue of this correspondence, we can define divisors and divisor class modules for toric P-

difference varieties. In particular, the class module and the Picard module of a toric P-difference variety

are defined. Moreover, we establish connections between the properties of toric P-difference varieties and

divisor class modules.

The rest of this paper is organized as follows. In Section 2, we list some preliminaries for difference

algebraic geometry and preliminaries for Z[x]-lattices which will be used in this paper. In section 3, we

introduce the concept of P-difference varieties. In section 4, affine toric difference varieties are defined

and basic properties are proved. In section 5, projective toric difference varieties are defined and basic

properties are proved. In section 6, we will define abstract toric difference varieties associated with fans

and prove their basic properties. In section 7, we will develop a divisor theory for toric P-difference

varieties. Conclusions are given in Section 8.
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2 Preliminaries

We list some basic notations and results on difference algebraic geometry and Z[x]-lattices in this section.

For more details about difference algebraic geometry, please refer to [9, 20]. For more details about

Z[x]-lattices, please refer to [5, 11].

2.1 Preliminaries for Difference Algebraic Geometry

First we recall some basic notions from difference algebra. For more details, please refer to [12, 20]. All

rings in this paper will be assumed to be commutative and unital.

A difference ring or σ-ring for short (R, σ), is a ring R together with a ring endomorphism σ : R→ R.

If R is a field, then we call it a difference field, or a σ-field for short. We usually omit σ from the notation,

simply refer to R as a σ-ring or a σ-field. A typical example of σ-field is the field of rational functions

Q(x) with σ(f(x)) = f(x+ 1). A morphism between σ-rings R and S is a ring homomorphism ψ : R→ S

which commutes with σ. In this paper, all σ-fields will be assumed to be of characteristic 0 and k is

always assumed to be a fixed σ-field.

A k-algebra R is called a k-σ-algebra if the algebra structure map k → R is a morphism of σ-rings. A

morphism of k-σ-algebras is a morphism of k-algebras which is also a morphism of σ-rings. A k-subalgebra

of a k-σ-algebra is called a k-σ-subalgebra if it is closed under σ. If a k-σ-algebra is a σ-field, then it is

called a σ-field extension of k. Let R and S be two k-σ-algebras. Then R⊗k S is naturally a k-σ-algebra

by defining σ(r ⊗ s) = σ(r)⊗ σ(s) for r ∈ R and s ∈ S.

Let R be a k-σ-algebra. For a subset A of R, the smallest k-σ-subalgebra of R containing A is denoted

by k{A}. If there exists a finite subset A of R such that R = k{A}, we say that R is finitely σ-generated

over k. If additionally R is a σ-field, the smallest k-σ-subfield of R containing A is denoted by k〈A〉.
Now we introduce the following useful notation. Let x be an algebraic indeterminate and p =∑s
i=0 cix

i ∈ Z[x]. Let K be any σ-field. Then for a ∈ K∗, we write ap =
∏s
i=0(σi(a))ci . It is easy

to check that for p, q ∈ Z[x], we have ap+q = apaq, apq = (ap)q.

Let R be a σ-ring. A σ-ideal I in R is an algebraic ideal which is closed under σ, i.e. σ(I) ⊆ I. If I

also has the property that σ(a) ∈ I implies a ∈ I, then it is called a reflexive σ-ideal. A σ-prime ideal is

a reflexive σ-ideal which is prime as an algebraic ideal. A σ-ideal I is called a perfect σ-ideal if for any

g ∈ N[x] \ {0} and a ∈ R, ag ∈ I implies a ∈ I. It is easy to prove that every σ-prime ideal is perfect.

If S is a subset of R, then we use (S), [S], and {S} to denote the algebraic ideal, the σ-ideal, and the

perfect σ-ideal generated by S respectively.

Suppose that Y = {y1, . . . , ym} is a set of σ-indeterminates over k (which means that all the variables

Y, σ(Y), σ2(Y), . . . are algebraicly independent over k). Then the σ-polynomial ring over k in Y is the

polynomial ring in the variables Y, σ(Y), σ2(Y), . . .. It is denoted by k{y1, . . . , ym} and has a natural

k-σ-algebra structure. An element in k{y1, . . . , ym} is called a σ-polynomial over k.

For convenience, we denote the category of σ-field extensions of k by Ek and write K ∈ Ek to express

that K is a σ-field extension of k. Let F ⊆ k{y1, . . . , ym} be a set of σ-polynomials. For any K ∈ Ek,

define the solutions of F in K to be

VK(F ) := {a ∈ Km | f(a) = 0 for all f ∈ F}.

Note that K  VK(F ) is naturally a functor from the category of σ-field extensions of k to the category

of sets. Let us denote this functor by V(F ).

Definition 2.1. An (affine) difference variety or σ-variety over k is a functor X from the category of

σ-field extensions of k to the category of sets which is of the form V(F ) for some subset F of k{y1, . . . , ym}.
In this situation, we say that X is the (affine) σ-variety defined by F .

If no confusion is caused, we will omit the word “affine” for simplicity.

The functor Amk given by Amk (K) = Km for K ∈ Ek is called the σ-affine (m-)space over k. Obviously,

Amk = V(0) is an affine σ-variety over k.
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If X and Y are two σ-varieties over k, then we write X ⊆ Y to indicate that X is a subfunctor of

Y . This simply means X(K) ⊆ Y (K) for every K ∈ Ek. In this situation, we also say that X is a

σ-subvariety of Y .

Let X be a σ-subvariety of Amk . Then

I(X) := {f ∈ k{y1, . . . , ym} | f(a) = 0 for all a ∈ X(K) and all K ∈ Ek}

is called the defining ideal or the vanishing ideal of X, which is a perfect σ-ideal. In [20, Chapter 2], it

is proved that the σ-subvarieties of Amk are in a one-to-one correspondence with the perfect σ-ideals of

k{y1, . . . , ym} and I(V(F )) = {F} for F ⊆ k{y1, . . . , ym}.
Definition 2.2. Let X be a σ-subvariety of Amk . Then the k-σ-algebra

k{X} := k{y1, . . . , ym}/I(X)

is called the σ-coordinate ring of X.

A k-σ-algebra is called an affine k-σ-algebra if it is isomorphic to k{y1, . . . , ym}/I for some perfect

σ-ideal I.

The following lemma is taken from [20, Remark 2.1.10].

Lemma 2.3. Let X be a k-σ-variety. Then for any K ∈ Ek, there is a natural bijection between X(K)

and the set of k-σ-algebra morphisms from k{X} to K. Indeed,

X ' Hom(k{X},−)

as functors.

Definition 2.4. Let X ⊆ Amk and Y ⊆ Ank be k-σ-varieties. A morphism of functors f : X → Y

is called a morphism of k-σ-varieties if there exist σ-polynomials f1, . . . , fn ∈ k{y1, . . . , ym} such that

f(a) = (f1(a), . . . , fn(a)) for every a ∈ X(K) and all K ∈ Ek.

In analogy with affine algebraic varieties, we have

Theorem 2.5. The category of affine k-σ-varieties is antiequivalent to the category of affine k-σ-

algebras.

Proof. Please refer to [20, Theorem 2.1.21].

Suppose that X is an affine k-σ-variety. Let Specσ(k{X}) be the set of all σ-prime ideals of k{X},
which is called the σ-spectrum of k{X}. Let F ⊆ k{X}. Set

V(F ) := {p ∈ Specσ(k{X}) | F ⊆ p} ⊆ Specσ(k{X}).

Obviously, V(F ) = V({F}). It can be checked that Specσ(k{X}) is a topological space with closed sets

of the forms V(F ), F ⊆ k{X}. Then the topological space of X is Specσ(k{X}) equipped with the above

Cohn topology.

Let F ⊆ k{y1, . . . , ym} and K,L ∈ Ek. Two solutions a ∈ VK(F ) and b ∈ VL(F ) are said to be

equivalent if there exists a k-σ-isomorphism between k〈a〉 and k〈b〉 which maps a to b. Obviously this

defines an equivalence relation. The following theorem gives a relationship between equivalence classes

of solutions of F and σ-prime ideals containing F . For the proof, please refer to [20, Theorem 2.2.1].

Theorem 2.6. Let X be a k-σ-variety. There is a natural bijection between the set of equivalence

classes of solutions of I(X) and Specσ(k{X}).
Because of Theorem 2.6, we shall not strictly distinguish between a σ-variety and its topological space.

In other words, we use X to mean the σ-variety or its topological space.

2.2 Preliminaries for Z[x]-lattices

A Z[x]-module that can be embedded into Z[x]n for some n is called a Z[x]-lattice. Since Z[x]n is

Noetherian as a Z[x]-module, we see that any Z[x]-lattice is finitely generated. Let L be a Z[x]-lattice.
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We always identify it with a Z[x]-submodule of Z[x]n for some n. Define the rank of L to be

rank(L) := dimQ(x) L⊗Q(x).

Note that L may not be a free Z[x]-module, thus the number of minimal generators of L can be larger

than its rank.

Sometimes we want to know whether a Z[x]-module is a Z[x]-lattice, i.e. whether it can be embedded

into Z[x]n for some n. The following lemma is taken from [19, p.172]:

Lemma 2.7. Let R be a domain and A an R-module. If A is finitely generated and torsion-free, then

A can be imbedded into a finitely generated free R-module.

Therefore, the condition for a finitely generated Z[x]-module to be a Z[x]-lattice is that it has no

torsion.

Suppose U = {u1, . . . ,um} ⊂ Z[x]n. The syzygy module of U , which is denoted by Syz(U), is

Syz(U) := {v ∈ Z[x]m | Uv = 0},

where we regard U as a matrix with columns ui, i = 1, . . . ,m.

It is clear that Syz(U) is a Z[x]-lattice in Z[x]m. Moreover, one can prove that

Lemma 2.8. Syz(U) is a free Z[x]-module of rank m− rank(U).

A Z[x]-lattice L ⊆ Z[x]m is said to be toric if it is Z[x]-saturated, that is for any nonzero g ∈ Z[x] and

u ∈ Z[x]m, gu ∈ L implies u ∈ L.

Remark 2.9. If U = {u1, . . . ,um} ⊂ Z[x]n, then the syzygy module of U is obviously Z[x]-saturated

and hence toric.

For a Z[x]-lattice L ⊆ Z[x]m, let

LC := {u ∈ Z[x]m | 〈u,v〉 = 0,∀v ∈ L},

where 〈u,v〉 = uτv is the dot product of u and v. By Lemma 2.8, LC is a free Z[x]-module and of rank

m− rank(L).

Remark 2.10. For a toric Z[x]-lattice L, one can check that (LC)C = L.

For u = (u1, . . . , um) ∈ Z[x]m, we denote by Yu the element
∏m
i=1 y

ui
i in k{y1, . . . , ym}. Yu is called a

σ-monomial and u is called its support.

Definition 2.11. Given a Z[x]-lattice L ⊆ Z[x]m, we define the binomial σ-ideal IL ⊆ k{y1, . . . , ym}
associated with L,

IL := [Yu+

− Yu− | u ∈ L] = [Yu − Yv | u,v ∈ N[x]m with u− v ∈ L],

where u+,u− ∈ N[x]m are the positive part and the negative part of u = u+ − u−, respectively. L is

called the support lattice of IL. If L is toric, then the corresponding binomial σ-ideal IL is called a toric

σ-ideal.

The following two lemmas will be used later.

Lemma 2.12. Let M be a Z[x]-lattice. Then M∗ := HomZ[x](M,Z[x]) is a free Z[x]-module and has

the same rank as M .

Proof. Suppose M = Z[x]({u1, . . . ,um}) := {
∑m
i=1 giui | gi ∈ Z[x]} ⊆ Z[x]n. Define a map

µ : Z[x]m −→M, ei 7−→ ui,

where {ei}mi=1 is the standard basis of Z[x]m. Let L = ker(µ). By Lemma 2.8, we have rank(L) =

m− rank(M). We define the following map

α : M∗ → Z[x]m, α(ϕ) = (ϕ(u1), . . . , ϕ(um)).

It is easy to see that α is an embedding and the image of α is LC which implies M∗ ' LC . Hence M∗ is

free and rank(M∗) = m− rank(L) = m− (m− rank(M)) = rank(M) by Lemma 2.8.
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Let M be a Z[x]-lattice. For v ∈ Z[x]n, we define a Z[x]-module homomorphism ϕv : M → Z[x] by

ϕv(u) = 〈u,v〉, for all u ∈M . So ϕv ∈M∗ and we obtain a map

θ : Z[x]n →M∗,v 7→ ϕv. (2.1)

Lemma 2.13. Let M be a Z[x]-lattice. For any ϕ ∈ M∗, there exists a g ∈ Z[x] such that gϕ = ϕv

for some v ∈ Z[x]n.

Proof. The map θ in (2.1) gives an exact sequence:

0 −→MC −→ Z[x]n
θ−→M∗.

Tensor it with Q(x) to obtain:

0 −→MC ⊗Q(x) −→ Q(x)n
θQ(x)−→ M∗ ⊗Q(x).

Therefore rank(Im(θQ(x))) = n − rank(MC ⊗ Q(x)) = n − (n − rank(M)) = rank(M). It follows

rank(Im(θ)) = rank(M). Since M∗ is a free Z[x]-module of the same rank of M by Lemma 2.12,

then for any ϕ ∈M∗, there exists a g ∈ Z[x] such that gϕ ∈ Im(θ) as desired.

3 Affine P [σ]-Varieties

In this section, we will introduce the concept of affine P [σ]-varieties which is a generalization of the

classical σ-varieties.

3.1 Perfect P [σ]-Ideals

Firstly let us define an order on Z[x] as follows. We define f =
∑p
i=0 aix

i > g =
∑p
i=0 bix

i if and only if

there exists an integer s such that ai = bi for s+ 1 6 i 6 p and as > bs. Obviously it is a total order on

Z[x] and f > 0 if and only if lc(f) > 0 (lc(f) is the leading coefficient of f). Let P [x] := {f ∈ Z[x] | f > 0}
and P [x]∗ := P [x]\{0}. We set 0g = 0 for g ∈ P [x]∗.

Suppose that Y = {y1, . . . , ym} is a set of σ-indeterminates over k. Then the P [σ]-polynomial ring over

k in Y is the polynomial ring in the variables ygi (a Laurent σ-monomial in k{yi}), g ∈ P [x]∗, i = 1, . . . ,m.

It is denoted by

k{y1, . . . , ym}P [σ]

and has a natural k-σ-algebra structure. An element in k{y1, . . . , ym}P [σ] is called a P [σ]-polynomial over

k. For u = (u1, . . . , um) ∈ P [x]m, the element Yu =
∏m
i=1 y

ui
i is called a P [σ]-monomial. A P [σ]-term is

the product of a constant in k and a P [σ]-monomial.

Definition 3.1. A σ-ideal I ⊆ k{y1, . . . , ym}P [σ] is called a P [σ]-ideal if Yuf ∈ I implies Yguf ∈ I for

g ∈ P [x]∗, u ∈ P [x]m, and f ∈ k{y1, . . . , ym}P [σ].

A σ-ideal I ⊆ k{y1, . . . , ym}P [σ] is called a P [σ]-perfect ideal if it is a perfect σ-ideal and a P [σ]-ideal.

A σ-ideal I ⊆ k{y1, . . . , ym}P [σ] is called a P [σ]-prime ideal if it is a P [σ]-perfect ideal and a prime ideal.

Remark 3.2. For u ∈ P [x]m, we set bu = (b1, . . . , bm) ∈ {0, 1}m such that bi = 1 if ui 6= 0 and bi = 0

if ui = 0 for i = 1, . . . ,m. If I ⊆ k{y1, . . . , ym}P [σ] is a perfect σ-ideal and Yuf ∈ I with u = u+ − u−,

where u+,u− ∈ N[x]m, then Yu+

f ∈ I, and therefore by the property of perfect σ-ideals, Ybuf ∈ I.

Furthermore, if I is a P [σ]-perfect ideal, then Yuf ∈ I implies Yvf ∈ I, for any v ∈ P [x]m satisfying

vi 6= 0 if ui 6= 0, 1 6 i 6 m.

It is easy to check that the intersection of P [σ]-perfect ideals is again a P [σ]-perfect ideal. Therefore,

each subset F of k{y1, . . . , ym}P [σ] is contained in a smallest P [σ]-perfect ideal, which is called the

P [σ]-perfect closure of F or the P [σ]-perfect ideal generated by F . It is denoted by {F}P [σ].
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Like the shuffling process of the perfect closure in the classical setting (see for instance [20, p.19]), we

describe a shuffling process for the P [σ]-perfect closure. For a perfect σ-ideal a of k{y1, . . . , ym}P [σ], we

set

a′ := {Yuf | u ∈ P [x]m, f ∈ k{y1, . . . , ym}P [σ] such that Ybuf ∈ a}. (3.1)

Let F be a subset of k{y1, . . . , ym}P [σ]. We define F [1] = {F}′ and recursively define F [i] = {F [i−1]}′ for

i > 2. One can check that {F}P [σ] = ∪i>1F
[i]. Moreover, we have

Lemma 3.3. Let F and G be two subsets of k{y1, . . . , ym}P [σ]. Then

(a) F [1]G[1] ⊆ (FG)[1];

(b) F [i]G[i] ⊆ (FG)[i] for i > 1;

(c) F [i] ∩G[i] = (FG)[i] for i > 1.

Proof. (a): Let Yuf ∈ F [1] and Yvg ∈ G[1]. Then by (3.1), Ybuf ∈ {F} and Ybvg ∈ {G}. So

Ybuf · Ybvg ∈ {F} ∩ {G} = {FG} ([20, Proposition 1.2.20]), and hence Ybu+bvfg ∈ {FG}. Then, we

have Ybu+vfg ∈ {FG}. It follows Yuf · Yvg = Yu+vfg ∈ (FG)[1].

(b): We prove (b) by induction on i. The case i = 1 is proved by (a). For the inductive step, assume

now i > 2. Then by (a) and the induction hypothesis,

F [i]G[i] = (F [i−1])[1](G[i−1])[1] ⊆ (F [i−1]G[i−1])[1]

⊆ ((FG)[i−1])[1] = (FG)[i].

(c): It is obvious that (FG)[i] ⊆ F [i] ∩ G[i]. For the converse, let Yuf ∈ F [i] ∩ G[i], then Y2uf2 ∈
F [i]G[i] ⊆ (FG)[i] = {(FG)[i−1]}′, so by (3.1), Ybuf2 ∈ {(FG)[i−1]} and hence Ybuf ∈ {(FG)[i−1]}. It

follows Yuf ∈ (FG)[i], which proves F [i] ∩G[i] ⊆ (FG)[i].

Proposition 3.4. Let F and G be two subsets of k{y1, . . . , ym}P [σ]. Then

{F}P [σ] ∩ {G}P [σ] = {FG}P [σ].

Proof. Obviously, {F}P [σ] ∩ {G}P [σ] ⊇ {FG}P [σ]. For the converse, let f ∈ {F}P [σ] ∩ {G}P [σ], then

there exist i ∈ N and j ∈ N such that f ∈ {F}[i] and f ∈ {G}[j]. Without loss of generality, we can

assume i 6 j, then f ∈ {F}[j]. Therefore, f ∈ F [j] ∩G[j] = (FG)[j] ⊆ {FG}P [σ].

Theorem 3.5. Let F be a subset of k{y1, . . . , ym}P [σ]. Then {F}P [σ] is the intersection of all P [σ]-

prime ideals containing F . In particular, every P [σ]-perfect ideal is the intersection of P [σ]-prime ideals.

Proof. Because P [σ]-prime ideals are P [σ]-perfect, it is clear that {F}P [σ] is contained in every P [σ]-

prime ideal containing F . It suffices to show that every P [σ]-perfect ideal is the intersection of P [σ]-prime

ideals.

Let I be any P [σ]-perfect ideal of k{y1, . . . , ym}P [σ]. If f is contained in every P [σ]-prime ideal

containing I, we have to show that f ∈ I. Suppose to the contrary that f /∈ I, then we will show that there

exists a P [σ]-prime ideal containing I which doesn’t contain f . Let Σ = {p | p is a P [σ]-perfect ideal, p ⊇
I, f /∈ p}. Clearly the union of an ascending chain of P [σ]-perfect ideals containing I not containing f is

again a P [σ]-perfect ideal containing I not containing f . Since I ∈ Σ, Σ is a nonempty set. So by Zorn’s

Lemma, there exists a maximal element in Σ, denoted it by q. We claim that q is a P [σ]-prime ideal.

We only need to show that q is prime. Suppose gh ∈ q, if both g and h are not in q, then by the

maximality of q, f ∈ {q, g}P [σ] and f ∈ {q, h}P [σ]. So f ∈ {q, g}P [σ] ∩ {q, h}P [σ]. By Proposition 3.4,

{q, g}P [σ] ∩ {q, h}P [σ] = {q2, qg, qh, gh}P [σ] ⊆ q, so f ∈ q which is contradictory to the choice of q. Thus

q is a P [σ]-prime ideal and it contains I but doesn’t contain f as desired.

Remark 3.6. It is well known that every perfect σ-ideal is a finite intersection of σ-prime ideals, which

is equivalent to the fact that any perfect σ-ideal is finitely generated as a perfect σ-ideal [20]. However,

in the P [σ]-case, we still do not know whether a P [σ]-perfect ideal can be written as an intersection of

finitely many P [σ]-prime ideals.
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3.2 Affine P [σ]-Varieties

Let F be any subset of k{y1, . . . , ym}P [σ] and K any σ-field extension of k. We define the solutions of F

in K to be

VK(F ) := {a ∈ Kn | f(a) = 0 for all f ∈ F}.

Definition 3.7. An (affine) P-difference variety or P [σ]-variety over k is a functor X from the category

of σ-field extensions of k to the category of sets which is of the form X = V(F ) for some subset F of

k{y1, . . . , ym}P [σ]. In this situation, we say that X is the (affine) P [σ]-variety defined by F .

Obviously, the σ-affine space Amk = V(0) is an affine P [σ]-variety over k. In fact, every affine σ-variety

can be naturally viewed as an affine P [σ]-variety.

If X and Y are two P [σ]-varieties over k, then we write X ⊆ Y to indicate that X is a subfunctor

of Y . This simply means X(K) ⊆ Y (K) for every K ∈ Ek. In this situation, we also say that X is a

P [σ]-subvariety of Y .

Let X be a P [σ]-subvariety of Amk . Then

I(X) := {f ∈ k{y1, . . . , ym}P [σ] | f(a) = 0 for all K ∈ Ek and all a ∈ X(K)}

is called the defining ideal or the vanishing ideal of X.

Lemma 3.8. Let X be a P [σ]-subvariety of Amk . Then I(X) is a P [σ]-perfect ideal.

Proof. Clearly, I(X) is a perfect σ-ideal. Suppose that Yuf ∈ I(X), u ∈ P [x]m and g ∈ P [x]∗. Then for

every K ∈ Ek and for every a ∈ X(K), auf(a) = 0, which implies aguf(a) = 0. It follows Yguf ∈ I(X).

Thus I(X) is a P [σ]-perfect ideal.

Definition 3.9. Let X be a P [σ]-subvariety of Amk . Then the k-σ-algebra

k{X} := k{y1, . . . , ym}P [σ]/I(X)

is called the P [σ]-coordinate ring of X.

A k-σ-algebra which is isomorphic to k{y1, . . . , ym}P [σ]/I for some P [σ]-perfect ideal I is called an

affine k-P [σ]-algebra.

Lemma 3.10. Let X be a k-P [σ]-variety. Then for any K ∈ Ek, there is a natural bijection between

X(K) and the set of k-σ-algebra morphisms from k{X} to K. Indeed, X ' Hom(k{X},−) as functors.

Proof. Let K ∈ Ek. Denote by ȳ the coordinate functions on X. If a ∈ X(K), we define a k-σ-algebra

morphism from k{X} to K by sending ȳ to a. Conversely, given a k-σ-algebra morphism φ : k{X} → K,

then a = φ(ȳ) belongs to X(K).

Proposition 3.11. Let F be a subset of k{y1, . . . , ym}P [σ], then

I(V(F )) = {F}P [σ].

Proof. Clearly, F ⊆ I(V(F )). Since by Lemma 3.8, the ideal I(V(F )) is a P [σ]-perfect ideal, we have

{F}P [σ] ⊆ I(V(F )). Now suppose f ∈ I(V(F )), we need to show f ∈ {F}P [σ]. Since {F}P [σ] is the

intersection of all P [σ]-prime ideals containing F , it suffices to show that f lies in every P [σ]-prime ideal

p with F ⊆ p. Let K be the residue class field of p and let a be the image of Y = {y1, . . . , ym} in K.

Since F ⊆ p, we find a ∈ VK(F ). And f ∈ I(V(F )) implies f(a) = 0. Therefore f ∈ p.

Theorem 3.12. The maps X 7→ I(X) and I 7→ V(I) define inclusion reversing bijections between the

set of all P [σ]-subvarieties of Amk and the set of all P [σ]-perfect ideals of k{y1, . . . , ym}P [σ].

Proof. Clearly, X ⊆ V(I(X)). Let X = V(F ) be a P [σ]-subvarieties of Amk . Since F ⊆ I(V(F )), we

have

X = V(F ) ⊇ V(I(V(F ))) = V(I(X)).

Therefore, V(I(X)) = X.

Let I be a P [σ]-perfect ideal of k{y1, . . . , ym}P [σ]. Then by Proposition 3.11, I(V(I)) = {I}P [σ] = I.



Jie Wang Sci China Math 9

Suppose that I is a P [σ]-ideal of k{y1, . . . , ym}P [σ]. Let k{y1, . . . , ym}P [σ]/I be the σ-ring quotient

of k{y1, . . . , ym}P [σ] by I and π : k{y1, . . . , ym}P [σ] → k{y1, . . . , ym}P [σ]/I the quotient map. Then,

P [σ]-monomials and P [σ]-terms of k{y1, . . . , ym}P [σ]/I are the images of P [σ]-monomials and P [σ]-

terms of k{y1, . . . , ym}P [σ] under π respectively. We define P [σ]-perfect ideals and P [σ]-prime ideals of

k{y1, . . . , ym}P [σ]/I as σ-ideals of k{y1, . . . , ym}P [σ]/I whose preimages under π are P [σ]-perfect ideals

and P [σ]-prime ideals of k{y1, . . . , ym}P [σ] respectively.

Corollary 3.13. Let X be an affine k-P [σ]-variety. Then the following map

Y 7→ {f ∈ k{X} | f(a) = 0,∀K ∈ Ek,∀a ∈ Y (K)}

is an inclusion reversing bijection between the set of all P [σ]-subvarieties of X and the set of all P [σ]-

perfect ideals of k{X}.
Proof. It is clear from the definitions and Theorem 3.12.

Definition 3.14. Let X and Y be two affine k-P [σ]-varieties. A k-σ-algebra morphism φ : k{X} →
k{Y } is called a morphism of affine k-P [σ]-algebras if φ maps P [σ]-terms to P [σ]-terms.

Definition 3.15. Let X ⊆ Amk and Y ⊆ Ank be two affine k-P [σ]-varieties. A morphism of func-

tors f : X → Y is called a morphism of affine k-P [σ]-varieties if there exist P [σ]-terms f1, . . . , fn ∈
k{y1, . . . , ym}P [σ] such that f(a) = (f1(a), . . . , fn(a)) for every K ∈ Ek and every a ∈ X(K).

Let X ⊆ Amk and Y ⊆ Ank be two affine k-P [σ]-varieties. Let f = (f1, . . . , fn) : X → Y be a morphism of

affine k-P [σ]-varieties and k{z1, . . . , zn}P [σ] the P [σ]-polynomial ring in the σ-indeterminates {z1, . . . , zn}.
We define

f̄ : k{z1, . . . , zn}P [σ] → k{X}, zi 7→ f̄i,

where f̄i is the image of fi in k{y1, . . . , ym}P [σ]/I(X), i = 1, . . . , n. Then for any K ∈ Ek, a ∈ X(K)

and g ∈ k{z1, . . . , zn}P [σ], f̄(g)(a) = g(f1(a), . . . , fn(a)) = g(f(a)). Because f(a) ∈ Y (K), we have

f̄(g)(a) = 0 if g ∈ I(Y ). So f̄(g) = 0 for g ∈ I(Y ). This shows that f̄ induces a morphism of affine

k-P [σ]-algebras

f∗ : k{Y } → k{X}, z̄i 7→ f̄i,

where z̄i is the coordinate function on Y , i = 1, . . . , n. We call f∗ the morphism dual to f , and f∗(g) =

g ◦ f , for any g ∈ k{Y }.
Theorem 3.16. The category of affine k-P [σ]-varieties is antiequivalent to the category of affine k-

P [σ]-algebras.

Proof. Let X ⊆ Amk and Y ⊆ Ank be two affine k-P [σ]-varieties. We need to show that

Hom(X,Y )→ Hom(k{Y }, k{X}), f 7→ f∗

is bijective. First for the injectivity, let f, g ∈ Hom(X,Y ) such that f∗ = g∗. Then h(f(a)) = f∗(h)(a) =

g∗(h)(a) = h(g(a)) for any h ∈ k{z1, . . . , zn}P [σ], K ∈ Ek and a ∈ X(K). Choosing h to be the coordinate

functions shows that f = g.

Now we show that the map is surjective. Let φ : k{Y } → k{X} be a morphism of affine k-P [σ]-

algebras, where k{Y } = k{z1, . . . , zn}P [σ]/I(Y ), k{X} = k{y1, . . . , ym}P [σ]/I(X). Suppose that φ(z̄i) =

f̄i ∈ k{X}, i = 1, . . . , n, where the fi’s are P [σ]-terms. Define f : X → Ank by f = (f1, . . . , fn). It is easy

to check that f is actually mapping into Y . So f : X → Y is a morphism of k-P [σ]-varieties. Clearly

φ = f∗.

Suppose that R is an affine k-P [σ]-algebra. Let SpecP [σ](R) be the set of all P [σ]-prime ideals of R,

which is called the P [σ]-spectrum of R. Let F ⊆ R and set

V(F ) := {p ∈ SpecP [σ](R) | F ⊆ p} ⊆ SpecP [σ](R).

By Theorem 3.5, we have V(F ) = V({F}P [σ]). The following lemma is easy to check.

Lemma 3.17. Let R be an affine k-P [σ]-algebra and F,G, Fi ⊆ R. Then
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1. V(0) = SpecP [σ](R) and V(R) = ∅;

2. V(F ) ∪ V(G) = V(FG);

3.
⋂
i V(Fi) = V(

⋃
i Fi).

Lemma 3.17 shows that SpecP [σ](R) is a topological space with closed sets of the forms V(F ), F ⊆ R.

For f ∈ R, set DP [σ](f) := SpecP [σ](R)\V(f) = {p ∈ SpecP [σ](R) | f /∈ p}. We call DP [σ](f) a basic

open subset of SpecP [σ](R).

Definition 3.18. Let X be an affine k-P [σ]-variety. Then the topological space of X is SpecP [σ](k{X})
equipped with the above topology.

In analogy with Theorem 2.6, we have

Theorem 3.19. Let X be an affine k-P [σ]-variety. There is a natural bijection between the set of

equivalence classes of solutions of I(X) and SpecP [σ](k{X}).
Because of Theorem 3.19, we shall not strictly distinguish between a P [σ]-variety and its topological

space. Namely, we will use X to mean the P [σ]-variety or its topological space.

4 Affine Toric P [σ]-Varieties

In this section, we will study the properties of affine toric P [σ]-varieties. Every affine toric P [σ]-variety

corresponds to an affine P [x]-semimodule. The story is very similar to what we do for affine toric

σ-varieties. But here, more properties will be proved.

4.1 Affine Toric P [σ]-Varieties and Affine P [x]-Semimodules

We start by recalling some basic facts about affine toric σ-varieties which were proved in [5].

Let (A∗)n be the functor from Ek to E n
k satisfying (A∗)n(K) = (K∗)n where K ∈ Ek and K∗ = K\{0}.

Let U = {u1, . . . ,um} ⊂ Z[x]n and T = (t1, . . . , tn) an n-tuple of σ-indeterminates. We define a functor

θU by

θUK : (A∗)n(K) −→ Am(K),T 7→ TU = (Tu1 , . . . ,Tum), (4.1)

for any K ∈ Ek. The functor T ∗U from Ek to Em
k with T ∗U (K) = Im(θUK) is called a quasi σ-torus.

Example 4.1. (A∗)m is a quasi σ-torus with U = {e1, . . . , em} the standard basis vectors of Z[x]m.

Definition 4.2. Given a finite set U ⊂ Z[x]n, the affine toric σ-variety XU is defined to be the closure

of the image of θU from (4.1) in Am with respect to the Cohn topology.

Given a finite set U = {u1, . . . ,um} ⊂ Z[x]n, recall that the affine N[x]-semimodule generated by U

is S := N[x](U) = {
∑m
i=1 giui | gi ∈ N[x], 1 6 i 6 m}. For every affine N[x]-semimodule S, we associate

it with an N[x]-semimodule algebra k[S] which is the vector space over k with S as a basis and has the

multiplication induced by the addition of S. More concretely,

k[S] :=
⊕
u∈S

kχu = {
∑
u∈S

cuχ
u | cu ∈ k and cu = 0 for all but finitely many u}

with the multiplication induced by χu · χv = χu+v, for u,v ∈ S. Make k[S] to be a k-σ-algebra by

defining σ(χu) = χxu, for u ∈ S.

In [5, Theorem 3.5], it was proved that an affine σ-variety X is toric if and only if there exists an affine

N[x]-semimodule S such that X ' Specσ(k[S]). Furthermore, the category of affine toric σ-varieties

with toric morphisms is antiequivalent to the category of affine N[x]-semimodules with N[x]-semimodule

morphisms ([5, Theorem 6.5]).

Each affine toric σ-variety contains a σ-torus as an open subset whose group action extends to the

affine toric σ-variety. In [5, Theorem 5.5], it was proved that an affine σ-variety T is a σ-torus if and

only if there exists a Z[x]-lattice M such that T ' Specσ(k[M ]).
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Remark 4.3. Let T = Specσ(k[M ]) be a σ-torus. A character of T is a morphism of σ-algebraic groups

χ : T → (A∗)1. Denote all characters of T by X(T ). Then X(T ) ⊆ k[M ]. Every u ∈M gives a character

χu : T → (A∗)1 which satisfies that for each K ∈ Ek and an element φ of T (K), χu(φ) = φ(u) ∈ K∗.
Actually, all characters of T arise in this way. Thus X(T ) 'M . In particular, X((A∗)n) ' Z[x]n.

Now we give the definition of affine toric P [σ]-varieties.

Definition 4.4. Given a finite set U = {u1, . . . ,um} ⊂ Z[x]n, the affine toric P [σ]-variety XU is the

closure of the quasi σ-torus T ∗U ⊆ Am in Am under the topology in Definition 3.18. More precisely, let

JU := {f ∈ k{y1, . . . , ym}P [σ] | f(Tu1 , . . . ,Tum) = 0}. (4.2)

Then the affine toric P [σ]-variety defined by U is XU = V(JU ).

Example 4.5. Am is an affine toric P [σ]-variety with quasi σ-torus (A∗)m.

For v = (vi) ∈ Z[x]m, let I = {i | vi ∈ P [x]}. We write v+ ∈ P [x]m with (v+)i = vi for i ∈ I,

and (v+)i = 0 for i ∈ {1, . . . ,m}\I; and write v− ∈ P [x]m with (v−)i = −vi for i ∈ {1, . . . ,m}\I, and

(v−)i = 0 for i ∈ I. Then v = v+ − v−.

Definition 4.6. Given a Z[x]-lattice L ⊆ Z[x]m, we define a binomial P [σ]-ideal JL ⊆ k{y1, . . . , ym}P [σ]

associated with L

JL := [Yv1 − Yv2 | v1 − v2 ∈ L,v1,v2 ∈ P [x]m] = [Yv+ − Yv− | v ∈ L].

L is called the support lattice of JL. If L is a toric Z[x]-lattice, then JL is called a toric P [σ]-ideal.

Lemma 4.7. Let U = {u1, . . . ,um} ⊂ Z[x]n and XU the affine toric P [σ]-variety defined by U . Then

JU = I(XU ) is a toric P [σ]-ideal whose support lattice is L = Syz(U).

Proof. By Remark 2.9, L is a toric Z[x]-lattice. Then it suffices to show that JU = JL, where JU is

defined in (4.2). For v ∈ L, we have (Yv− 1)(TU ) = (TU )v− 1 = TUv− 1 = 0, where we regard U as the

matrix with the columns ui, i = 1, . . . ,m. As a consequence, (Yv+ −Yv−)(TU ) = 0 and Yv+ −Yv− ∈ JU
with v ∈ L. Since JL is generated by Yv+ − Yv− for v ∈ L, we have JL ⊆ JU .

To prove the other direction of the inclusion, let us consider the following map

θ : k{y1, . . . , ym}P [σ] → k{t±1
1 , . . . , t±1

n }, f 7→ f(Tu1 , . . . ,Tum).

Define a grading on k{y1, . . . , ym}P [σ] by deg(Yv) = Uv ∈ Z[x]n, where we regard U as the matrix with

the columns ui, i = 1, . . . ,m. The grading on k{t±1
1 , . . . , t±1

n } is given by deg(Tu) = u ∈ Z[x]n. Then

k{y1, . . . , ym}P [σ] and k{t±1
1 , . . . , t±1

n } are both Z[x]n-graded. It is easy to check that θ is a homogeneous

map of degree 0. It follows that the kernel of θ is homogeneous. So an element of ker(θ) of degree u can

be written as
∑
Uv=u αvYv with

∑
v αv = 0. Such an element is in JL. Hence JU = ker(θ) ⊆ JL.

The following lemma shows that the converse of Lemma 4.7 is also valid.

Lemma 4.8. If I is a toric P [σ]-ideal in k{y1, . . . , ym}P [σ], then V(I) is an affine toric P [σ]-variety.

Proof. Since I is a toric P [σ]-ideal, then the Z[x]-lattice corresponding to I, denoted by L, is toric.

Suppose that V = {v1, . . . ,vn} ⊂ Z[x]m is a set of generators of LC . Regard V as a matrix with columns

vi, i = 1, . . . , n and let U = {u1, . . . ,um} ⊂ Z[x]n be the set of the row vectors of V . Let us consider

the affine toric P [σ]-variety XU defined by U . To prove the lemma, it suffices to show XU = V(I)

or JU = I. Since toric P [σ]-ideals and toric Z[x]-lattices are in a one-to-one correspondence and the

support lattice of JU is Syz(U) by Lemma 4.7, we only need to show Syz(U) = L. This is clear since

Syz(U) = ker(V τ ) = (LC)C = L by Remark 2.10.

Combining Lemma 4.7 and Lemma 4.8, we have

Theorem 4.9. An affine P [σ]-variety X is toric if and only if I(X) is a toric P [σ]-ideal.

Now we introduce the concept of affine P [x]-semimodules.

A subset S ⊆ Z[x]n is called a P [x]-semimodule if it satisfies (i) if u,v ∈ S, then u + v ∈ S, and (ii)

if g ∈ P [x] and u ∈ S, then gu ∈ S. Moreover, if there exists a finite subset U = {u1, . . . ,um} ⊂ Z[x]n
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such that S = P [x](U) := {
∑m
i=1 giui | gi ∈ P [x], 1 6 i 6 m}, then S is called an affine P [x]-semimodule.

If S is an affine P [x]-semimodule, let Smd := {u− v | u,v ∈ S} be the Z[x]-lattice generated by S, and

we define rank(S) as the rank of the Z[x]-lattice Smd. A map φ : S → S′ between two P [x]-semimodules

is a P [x]-semimodule morphism if φ satisfies φ(u + v) = φ(u) + φ(v), φ(gu) = gφ(u) for all u,v ∈ S and

g ∈ P [x].

Remark 4.10. For an affine P [x]-semimodule S = P [x]({u1, . . . ,um}), if some ui can be generated by

the other {uj}j 6=i, i.e. there exist gj ∈ P [x], j 6= i such that ui =
∑
j 6=i gjuj , then we can delete ui from

{u1, . . . ,um} to generate the same affine P [x]-semimodule. We say that a set of generators {u1, . . . ,um}
of S is reduced if there is no such ui in {u1, . . . ,um} and we always assume that the set of generators of

an affine P [x]-semimodule S is reduced in the following.

For every affine P [x]-semimodule S, we define a P [x]-semimodule algebra k[S] which is the vector space

over k with S as a basis and the multiplication induced by the addition of S. More concretely,

k[S] :=
⊕
u∈S

kχu = {
∑
u∈S

cuχ
u | cu ∈ k and cu = 0 for all but finitely many u},

with the multiplication induced by

χu1 · χu2 = χu1+u2 .

Make k[S] to be a k-σ-algebra by defining

σ(χu) = χxu, for u ∈ S.

Suppose S = P [x](U) = P [x]({u1, . . . ,um}), then k[S] = k{χu1 , . . . , χum}P [σ]. When an embedding

S → Z[x]n is given, it induces an embedding k[S] → k[Z[x]n] ' k{t±1
1 , . . . , t±1

n } via χu mapping to Tu,

where T = {t1, . . . , tn} is a set of σ-indeterminates. Therefore, k[S] is a k-σ-subalgebra of k{t±1
1 , . . . , t±1

n }
and it follows that k[S] is a σ-domain. Also, we can view k[S] as an S-graded ring by defining deg(χu) = u.

We will see that k[S] is actually the P [σ]-coordinate ring of an affine toric P [σ]-variety.

Theorem 4.11. Let X be an affine k-P [σ]-variety. Then X is toric if and only if there exists an affine

P [x]-semimodule S such that X ' SpecP [σ](k[S]). Equivalently, the P [σ]-coordinate ring of X is k[S].

Proof. Suppose that X = XU is the affine toric P [σ]-variety defined by U = {u1, . . . ,um} ⊂ Z[x]n

and JU is defined in (4.2). Let S = P [x](U) be the affine P [x]-semimodule generated by U . Define the

following k-σ-algebra homomorphism

θ : k{y1, . . . , ym}P [σ] −→ k[S], yi 7→ χui , i = 1, . . . ,m.

The map θ is surjective by the definition of k[S]. If f ∈ ker(θ), then f(χu1 , . . . , χum) = 0, which

is equivalent to f ∈ JU . It follows that ker(θ) = JU and k{y1, . . . , ym}P [σ]/JU ' k[S]. Therefore,

X ' SpecP [σ](k{y1, . . . , ym}P [σ]/JU ) = SpecP [σ](k[S]).

Conversely, if X ' SpecP [σ](k[S]), where S ⊆ Z[x]n is an affine P [x]-semimodule, and assume that

S = P [x]({u1, . . . ,um}). Let XU be the affine toric P [σ]-variety defined by U = {u1, . . . ,um}. Then as

we just proved, the P [σ]-coordinate ring of XU is isomorphic to k[S]. Then X 'XU .

Suppose that S is an affine P [x]-semimodule. For each K ∈ Ek, a map φ : S → K is a morphism from

S to K if φ satisfies φ(
∑
i giui) =

∏
i φ(ui)

gi , for ui ∈ S and gi ∈ P [x].

Corollary 4.12. Let X = SpecP [σ](k[S]) be an affine toric P [σ]-variety. Then for each K ∈ Ek, there

is a one-to-one correspondence between X(K) and Hom(S,K). Equivalently, X ' Hom(S,−) as functors.

Proof. By Lemma 3.10, for each K ∈ Ek, an element of X(K) is given by a k-σ-algebra homomorphism

f : k[S] → K. Then f induces a morphism f̄ : S → K such that f̄(u) = f(χu) for u ∈ S. Conversely,

given a morphism ϕ : S → K, ϕ extends to a k-σ-algebra homomorphism ϕ∗ : k[S] → K which proves

the one-to-one correspondence.

In the rest of this paper, we always identity an element of X(K) with a morphism from S to K for

each K ∈ Ek.

We have the following definition for P [σ]-tori.
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Definition 4.13. Let U = {u1, . . . ,um} ⊂ Z[x]n. The P [σ]-torus T̃U defined by U is the closure of

the quasi σ-torus T ∗U ⊆ Am in (A∗)m under the topology in Definition 3.18.

Remark 4.14. The above definition can be stated in a more precise way. Note that (A∗)m is isomorphic

to the affine P [σ]-variety defined by I0 = [y1z1 − 1, . . . , ymzm − 1] in (A)2m. Furthermore, the map

θ : (A∗)m −→ (A)2m (4.3)

defined by θ(a1, . . . , am) = (a1, . . . , am, a
−1
1 , . . . , a−1

m ) gives a one-to-one correspondence between P [σ]-

subvarieties of (A∗)m and affine P [σ]-varieties contained in V(I0). Then the P [σ]-torus T̃U is the preimage

of the affine P [σ]-variety XU∪(−U) in A2m under the map θ, where −U = {−u1, . . . ,−um}.

Suppose U = {u1, . . . ,um} ⊂ Z[x]n. Let T̃U and XU be the P [σ]-torus and the affine toric P [σ]-variety

defined by U respectively. Then by definition, T̃U = XU ∩ (A∗)m.

Proposition 4.15. Let T̃ be an affine P [σ]-variety. Then T̃ is a P [σ]-torus if and only if there exists

a Z[x]-lattice M such that T̃ ' SpecP [σ](k[M ]).

Proof. Suppose that T̃ is defined by U and let M = Z[x](U). Since T̃ ' XU∪(−U) (Remark 4.14), we

just need to show that the P [σ]-coordinate ring of XU∪(−U) is k[M ]. By definition, XU∪(−U) is the affine

toric P [σ]-variety defined by U ∪ (−U). Thus by Theorem 4.11, the P [σ]-coordinate ring of XU∪(−U) is

k[P [x](U ∪ (−U))] = k[M ].

Conversely, suppose that U is a finite subset of Z[x]n and M = Z[x](U). Then by the proof of the

above necessity, U defines a P [σ]-torus T̃U whose P [σ]-coordinate ring is k[M ]. Since T̃ ' T̃U , T̃ is a

P [σ]-torus.

As a corollary of Proposition 4.15, we have

Corollary 4.16. Suppose that S is an affine P [x]-semimodule. Let X = SpecP [σ](k[S]) and T̃ =

SpecP [σ](k[Smd]). For each K ∈ Ek, there is a one-to-one correspondence between elements of T̃ (K) and

Hom(Smd,K). Equivalently, T̃ ' Hom(Smd,−) as functors.

Proof. For each K ∈ Ek, suppose that γ : S → K is an element of X(K) which lies in T̃ (K). Since

elements of T̃ (K) are invertible, γ(S) ⊆ K∗ and hence γ can be extended to Smd by defining γ(−u) =

1/γ(u),u ∈ S. So the one-to-one correspondence follows from Proposition 4.12.

Let M be a Z[x]-lattice. Let T = Specσ(k[M ]) and T̃ = SpecP [σ](k[M ]) be the σ-torus and the P [σ]-

torus associated with M respectively. Since by [5, Proposition 5.7], T ' Hom(M,−) and by Corollary

4.16, T̃ ' Hom(M,−), we know that T = T̃ as functors. So a P [σ]-torus is actually a σ-torus and we

will write T for T̃ .

Proposition 4.17. Let U = {u1, . . . ,um} ⊂ Z[x]n and XU the affine toric P [σ]-variety defined by U .

Then XU is an irreducible P [σ]-variety containing the σ-torus TU as an open subset and is of σ-dimension

rank(U).

Proof. Let S = P [x](U). Since XU has the P [σ]-coordinate ring k[S] by Theorem 4.11 and k[S] is a

σ-domain, then XU is irreducible. The inclusion i : S ↪→M = Smd induces a k-σ-algebra homomorphism

i∗ : k[S] ↪→ k[M ] which corresponds to a morphism j : TU →XU . Smd is generated as a P [x]-semimodule

by S and −(u1 + . . .+ um). This implies that k[M ] is the localization of k[S] at the element χu1+...+um .

Therefore, j embeds TU into XU as a principal affine open subset. Since the σ-dimension of TU is rank(U),

the σ-dimension of XU is equal to rank(U).

4.2 σ-Algebraic Group Action on X

A σ-variety G is called a σ-algebraic group if G has a group structure and the group multiplication and

the inverse map are both morphisms of σ-varieties (see [21]).

Definition 4.18. Let G be a σ-algebraic group and X a P [σ]-variety. We say that G has a σ-algebraic

group action on X if there exists a morphism of P [σ]-varieties (regrading G as a P [σ]-variety)

φ : G×X −→ X
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such that for any K ∈ Ek,

φK : G(K)×X(K) −→ X(K)

is a group action of G(K) on X(K).

As in the σ-case, there is a σ-algebraic group action on an affine toric P [σ]-variety. Given an

affine P [x]-semimodule S, let X and T be the affine toric P [σ]-variety and the σ-torus associated

with S respectively. We describe how T acts on X as a σ-algebraic group. Define a map X × X →
X : ((x1, . . . , xm), (y1, . . . , ym)) 7→ (x1y1, . . . , xmym), for (x1, . . . , xm), (y1, . . . , ym) ∈ X. It can be de-

scribed using P [x]-semimodule morphisms as follows: for any K ∈ Ek, let ϕ,ψ : S → K be two elements

of X(K), then (ϕ,ψ) 7→ ϕψ : S → K,ϕψ(u) = ϕ(u)ψ(u), for u ∈ S. This corresponds to the k-σ-algebra

homomorphism Φ: k[S]→ k[S]⊗ k[S] such that Φ(χu) = χu ⊗ χu, for u ∈ S.

Via the embedding T ⊆ X, the operation on X induces a map T × X → X which is clearly a σ-

algebraic group action on X and extends the group action of T on itself. It corresponds to the k-σ-algebra

homomorphism k[S]→ k[Smd]⊗ k[S], χu 7→ χu ⊗ χu, for u ∈ S.

The following theorem shows that if an affine P [σ]-variety contains a σ-torus as an open subset ex-

tending the group action of the σ-torus on itself, then it is toric. In other words, the theorem gives a

description of affine toric P [σ]-varieties in terms of σ-algebraic group actions.

Theorem 4.19. Let X be an affine k-P [σ]-variety, T ⊆ X an open subset which is a σ-torus such

that the group action of T on itself extends to a σ-algebraic group action on X. Then there is an affine

P [x]-semimodule S and an isomorphism X ' SpecP [σ](k[S]). In other words, X is an affine toric P [σ]-

variety.

Proof. By Proposition 4.15, there is a Z[x]-lattice M such that T ' SpecP [σ](k[M ]). The open embed-

ding T ⊆ X induces k{X} ⊆ k[M ]. Since the action of T on itself extends to a σ-algebraic group action

on X, we have the following commutative diagram:

T × T
φ //

��

T

��
T ×X

φ̃ // X

(4.4)

where φ is the group action of T , φ̃ is the extension of φ to T ×X.

From (4.4), we obtain the following commutative diagram of the corresponding P [σ]-coordinate rings:

k{X} Φ̃ //

��

k[M ]⊗k k{X}

��
k[M ]

Φ // k[M ]⊗k k[M ]

where the vertical maps are inclusions, and Φ(χu) = χu ⊗ χu for u ∈M . It follows that if
∑

u∈M αuχ
u

with finitely many αu 6= 0 is in k{X}, then
∑

u∈M αuχ
u ⊗ χu is in k[M ]⊗k k{X}. So αuχ

u ∈ k{X} for

every u ∈M . This shows that there is a subset S of M such that k{X} = k[S] =
⊕

u∈S kχ
u. Since k{X}

is an affine k-P [σ]-subalgebra of k[M ], it follows that S is an affine P [x]-semimodule. So by Theorem

4.11, X is an affine toric P [σ]-variety.

4.3 Toric Morphisms between Affine Toric P [σ]-Varieties

Note that if φ : S1 → S2 is a morphism between affine P [x]-semimodules, we have an induced k-σ-algebra

homomorphism φ̄ : k[S1] → k[S2] such that φ̄(χu) = χφ(u), for all u ∈ S1, which gives a morphism

between affine toric P [σ]-varieties φ∗ : SpecP [σ](k[S2]) → SpecP [σ](k[S1]). In this subsection, we will

show that actually all toric morphisms between affine toric P [σ]-varieties arise in this way. First we give

the definition of toric morphisms.
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Definition 4.20. Let Xi = SpecP [σ](k[Si]) be the affine toric P [σ]-varieties coming from affine P [x]-

semimodules Si with σ-tori Ti, i = 1, 2 respectively. A morphism φ : X1 → X2 is said to be toric if

φ(T1) ⊆ T2 and φ|T1
is a σ-algebraic group homomorphism.

Proposition 4.21. Let φ : X1 → X2 be a toric morphism of affine toric P [σ]-varieties. Then φ

preserves group actions, namely,

φ(t · p) = φ(t) · φ(p),

for all t ∈ T1 and p ∈ X1.

Proof. Suppose that the action of Ti on Xi is given by the morphism ϕi : Ti ×Xi → Xi, i = 1, 2. To

show φ preserves group actions is equivalent to showing that the following diagram is commutative:

T1 ×X1
ϕ1 //

φ|T1
×φ
��

X1

φ

��
T2 ×X2

ϕ2 // X2

(4.5)

If we replace Xi by Ti in the diagram, i = 1, 2, then it certainly commutes since φ|T1 is a σ-algebraic

group homomorphism. And since T1 × T1 is dense in T1 ×X1, the whole diagram is commutative.

The following lemma is taken from [5, Lemma 6.3].

Lemma 4.22. Let Ti be the σ-tori associated with the Z[x]-lattices Mi, i = 1, 2 respectively. Then

a map φ : T1 → T2 is a σ-algebraic group homomorphism if and only if the corresponding map of the

σ-coordinate rings φ∗ : k[M2]→ k[M1] is induced by a Z[x]-module homomorphism φ̂ : M2 →M1.

Theorem 4.23. Let Xi = SpecP [σ](k[Si]) be affine toric P [σ]-varieties coming from affine P [x]-

semimodules Si with σ-tori Ti, i = 1, 2 respectively. Then a morphism φ : X1 → X2 is toric if and

only if it is induced by a P [x]-semimodule morphism φ̂ : S2 → S1.

Proof. For the sufficiency, suppose that φ̂ : S2 → S1 is a P [x]-semimodule morphism. Then φ̂ extends

to a Z[x]-module homomorphism φ̂ : M2 →M1, where M1 = Smd1 ,M2 = Smd2 . By Lemma 4.22, it induces

a morphism of σ-algebraic groups φ : T1 → T2. So φ is toric.

For the necessity, note that φ induces φ∗ : k[S2] → k[S1]. Since φ is toric, φ|T1
is a σ-algebraic group

homomorphism. By Lemma 4.22, it is induced by a Z[x]-module homomorphism φ̃ : M2 → M1. This,

combined with φ∗(k[S2]) ⊆ k[S1], implies that φ̃ induces a P [x]-semimodule morphism φ̂ : S2 → S1.

Combining Theorem 4.11 with Theorem 4.23, we have

Theorem 4.24. The category of affine toric P [σ]-varieties with toric morphisms is antiequivalent to

the category of affine P [x]-semimodules with P [x]-semimodule morphisms.

4.4 T -Orbits of Affine Toric P [σ]-Varieties

In this subsection, we will establish a one-to-one correspondence between the irreducible T -invariant

P [σ]-subvarieties of an affine toric P [σ]-variety and the faces of the corresponding affine P [x]-semimodule.

Also, a one-to-one correspondence between the T -orbits of an affine toric P [σ]-variety and the faces of

corresponding affine P [x]-semimodules is given for a class of affine P [x]-semimodules.

Definition 4.25. Let S be an affine P [x]-semimodule. Define a face of S to be a P [x]-subsemimodule

F ⊆ S such that

1. for u1,u2 ∈ S, u1 + u2 ∈ F implies u1,u2 ∈ F ;

2. for g ∈ P [x]∗ and u ∈ S, gu ∈ F implies u ∈ F .

If F is a face of S, then we write F � S.

Note that if S = P [x]({u1,u2, . . . ,um}), and F is a face of S, then F is generated by a subset of

{u1,u2, . . . ,um} as a P [x]-semimodule. It follows that F is an affine P [x]-semimodule and S has only

finitely many faces. S is a face of itself. A proper face of S is a face strictly contained in S. It is easy
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to check that the intersection of two faces is again a face and a face of a face is again a face. A face

of rank one is called an edge, and a face of rank rank(S) − 1 is called a facet. Note that unlike affine

N[x]-semimodules, a proper face of an affine P [x]-semimodule S must have rank less than rank(S). S is

said to be pointed if S ∩ (−S) = {0}, i.e. {0} is a face of S.

Example 4.26. Let S = P [x]({x− 1, x− 2}). Then S has two faces: F1 = {0} and F2 = S.

Example 4.27. Let S = P [x]({u1 = (x, 1),u2 = (x, 2),u3 = (x, 3)}). Then S has four faces: F1 =

{0}, F2 = P [x](u1), F3 = P [x](u3) and F4 = S.

Example 4.28. Let S = P [x]({u1 = (x, 1, 1),u2 = (1, x, 1),u3 = (1, 1, x),u4 = (1, 1, 1)}). Then

S has eight faces: F1 = {0}, F2 = P [x](u1), F3 = P [x](u2), F4 = P [x](u3), F5 = P [x]({u2,u3}),
F6 = P [x]({u1,u3}), F7 = P [x]({u1,u2}) and F8 = S.

Lemma 4.29. Let S be an affine P [x]-semimodule. A subset F of S is a face if and only if k[S\F ] is

a P [σ]-prime ideal of k[S].

Proof. Let I = k[S\F ] :=
⊕

u∈S\F kχ
u.

For the necessity, suppose that F is a face of S. Note that F can be viewed as a face of S as an

N[x]-semimodule, so by [5, Lemma 6.8], I is a σ-prime ideal. We need to show that I is a P [σ]-ideal.

Suppose χuf ∈ I and f =
∑
i αiχ

ui , then χuf =
∑
i αiχ

u+ui . Thus u + ui ∈ S\F . For g ∈ P [x]∗,

χguf ∈ I is equivalent to gu + ui ∈ S\F for all i. Suppose to the contrary that gu + ui ∈ F for some i.

Because F is a face of S, it follows that u,ui ∈ F and hence u + ui ∈ F , which is a contradictory.

For the sufficiency, suppose that I is a P [σ]-prime ideal of k[S]. Since I is a P [σ]-ideal, we have

u1 ∈ S\F or u2 ∈ S\F implies u1 + u2 ∈ S\F , and for g ∈ P [x]∗, u ∈ S\F implies gu ∈ S\F . As a

consequence, u1 + u2 ∈ F implies u1,u2 ∈ F , and for g ∈ P [x]∗, gu ∈ F implies u ∈ F . Moreover, since

I is prime, we have u1 + u2 ∈ S\F implies u1 ∈ S\F or u2 ∈ S\F . As a consequence, u1,u2 ∈ F implies

u1 + u2 ∈ F . Since I is perfect, we have for g ∈ P [x]∗, gu ∈ S\F implies u ∈ S\F . As a consequence,

for g ∈ P [x]∗, u ∈ F implies gu ∈ F . Put all above together and it follows that F is a face of S.

Let S be an affine P [x]-semimodule. Let X = SpecP [σ](k[S]) be an affine toric P [σ]-variety and T the

σ-torus of X. A P [σ]-subvariety Y of X is said to be invariant under the action of T if T · Y ⊆ Y . For

a face F of S, let Y = SpecP [σ](k[F ]). Without loss of generality, assume that S = P [x]({u1, . . . ,um})
and F = P [x]({u1, . . . ,ur}). We always view Y as a P [σ]-subvariety of X through the embedding

j : Y → X, γ ∈ Y (K) 7→ (γ(u1), . . . , γ(ur), 0, . . . , 0) ∈ X(K) for each K ∈ Ek. The following theorem

gives a description for irreducible invariant P [σ]-subvarieties of X in terms of the faces of S.

Theorem 4.30. Let S be an affine P [x]-semimodule. Let X = SpecP [σ](k[S]) be an affine toric P [σ]-

variety and T the σ-torus of X. Then the irreducible invariant P [σ]-subvarieties of X under the action of

T are in an inclusion-preserving bijection with the faces of S. More precisely, if we denote the irreducible

invariant P [σ]-subvariety corresponding to the face F by D(F ), then D(F ) is defined by the P [σ]-ideal

k[S\F ] =
⊕

u∈S\F kχ
u and the P [σ]-coordinate ring of D(F ) is k[F ] =

⊕
u∈F kχ

u.

Proof. For a face F of S, let Y = SpecP [σ](k[F ]). It is clear that Y is invariant under the action of T .

The defining ideal of Y is I = k[S\F ]. Hence by Lemma 4.29, Y is irreducible.

On the other hand, suppose that Y is an irreducible invariant P [σ]-subvariety of X and is defined by

the P [σ]-ideal I. Then k{Y } = k[S]/I. By definition, Y is invariant under the σ-torus action if and only

if the action of T on X induces an action on Y , i.e. we have the following commutative diagram:

k[S]
φ //

��

k[M ]⊗ k[S]

��
k{Y } // k[M ]⊗ k{Y }

where M = Smd. Since k[M ] ⊗ k{Y } = k[M ] ⊗ (k[S]/I) ' k[M ] ⊗ k[S]/k[M ] ⊗ I, we must have

φ(I) ⊆ k[M ] ⊗ I. As in the proof of Theorem 4.19, this is equivalent to the fact that I is an M -graded

ideal of k[S], i.e. we can write I = ⊕u∈S′kχu, where S′ is a subset of S. Since I is a P [σ]-prime ideal, then

by Lemma 4.29, F = S\S′ is a face of S. Moreover, since I = k[S\F ], we have k{Y } = k[S]/I = k[F ].
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Remark 4.31. Suppose that F is a face of S. Note that for K ∈ Ek, an element γ : S → K of X(K)

lies in D(F )(K) if and only if γ(S\F ) = 0.

Suppose that X is an affine toric P [σ]-variety with σ-torus T . By Theorem 4.19, for each K ∈ Ek,

T (K) has a group action on X(K), so we have orbits of T (K) in X(K) under the action. To construct

a correspondence between orbits and faces, we need a new kind of affine P [x]-semimodules. Suppose

that S is an affine P [x]-semimodule, we say that S is face-saturated if for any face F of S, a morphism

ϕ : F → K∗ can be extended to a morphism ϕ̃ : S → K∗ for any K ∈ Ek. A necessary condition for S to

be face-saturated is that for any face F of S, Fmd is P [x]-saturated in Smd, that is, for any g ∈ P [x]∗

and u ∈ Smd, gu ∈ Fmd implies u ∈ Fmd.
Example 4.32. Let S = P [x]({(2, 0), (1, 1), (0, 1)}) and F = P [x]((2, 0)) a face of S. Then (1, 0) ∈
Smd. Since (1, 0) /∈ F and 2(1, 0) ∈ F , S is not face-saturated.

We have the following Orbit-Face correspondence theorem.

Theorem 4.33. Suppose that S is a face-saturated affine P [x]-semimodule. Let X = SpecP [σ](k[S])

be the affine toric P [σ]-variety associated with S and T the σ-torus of X. Then for each K ∈ Ek, there

is a one-to-one correspondence between the orbits of T (K) in X(K) and the faces of S.

Proof. The proof is similar to [5, Theorem 6.11].

5 Projective Toric P [σ]-Varieties

In this section, we will define projective toric P [σ]-varieties.

5.1 Projective P [σ]-Varieties

Let k be a σ-field. A σ-projective (m-)space over k is a functor Pm = (Am+1\{0})/A∗ from the category

of σ-field extensions of k to the category of sets given by Pm(K) = (Km+1\{0})/K∗ for K ∈ Ek, where

K∗ acts via homotheties, i.e. λ · (a0, . . . , am) = (λa0, . . . , λam) for λ ∈ K∗ and (a0, . . . , am) ∈ Km+1.

Definition 5.1. A P [σ]-polynomial f ∈ k{y0, . . . , ym}P [σ] is said to be transformally homogeneous

if for a new σ-indeterminate λ, there exists a P [σ]-monomial M(λ) in λ such that f(λy0, . . . , λym) =

M(λ)f(y0, . . . , ym). A P [σ]-ideal is homogeneous if it can be generated by a set of transformally homo-

geneous P [σ]-polynomials.

Definition 5.2. Suppose F is a set of transformally homogeneous P [σ]-polynomials in k{y0, . . . , ym}P [σ].

The projective P [σ]-variety over k defined by F is a subfunctor of Pm given by VK(F ) = {a ∈ Pm(K) |
f(a) = 0,∀f ∈ F} for each K ∈ Ek.

If X is a projective P [σ]-variety, then the ideal I(X) generated by all transformally homogeneous

P [σ]-polynomials vanishing on X is called the defining ideal or the vanishing ideal of X and

k{X} := k{y0, . . . , ym}P [σ]/I(X)

is called the homogeneous P [σ]-coordinate ring of X.

Suppose that X is a projective P [σ]-variety. A P [σ]-ideal in k{X} is homogeneous if it can be generated

by a set of images of transformally homogeneous P [σ]-polynomials. Let ProjP [σ](k{X}) be the set of all

homogeneous P [σ]-prime ideals of k{X} except {ȳ0, . . . , ȳm}P [σ] (ȳi denote the coordinate functions on

X, 0 6 i 6 m). Let F ⊆ k{X}. We set

V (F ) := {p ∈ ProjP [σ](k{X}) | F ⊆ p} ⊆ ProjP [σ](k{X}).

The following lemma is easy to check.

Lemma 5.3. Let X be a projective k-P [σ]-variety and F,G, Fi ⊆ k{X}. Then

1. V (0) = ProjP [σ](k{X}) and V (k{X}) = ∅;
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2. V (F ) ∪ V (G) = V (FG);

3.
⋂
i V (Fi) = V (

⋃
i Fi).

Lemma 5.3 shows that ProjP [σ](k{X}) is a topological space with closed sets of the forms V (F ), F ⊆
k{X}.
Definition 5.4. LetX be a projective k-P [σ]-variety. Then the topological space ofX is ProjP [σ](k{X})
equipped with the above topology.

5.2 Z[x]-Lattice Points and Projective Toric P [σ]-Varieties

Note that Pm−1 is a toric P [σ]-variety with the σ-torus

TPm−1 = Pm−1\V(y0 . . . ym−1) = {(a0, . . . , am−1) ∈ Pm−1 | a0 . . . am−1 6= 0}
= {(1, t1, . . . , tm−1) ∈ Pm−1 | t1, . . . , tm−1 ∈ A∗} ' (A∗)m−1.

The action of TPm−1 on itself clearly extends to an action on Pm−1, making Pm−1 a toric P [σ]-variety.

To describe the character lattice of TPm−1 , let us consider the exact sequence of σ-tori

1 −→ A∗ −→ (A∗)m π−→ TPm−1 −→ 1. (5.1)

Applying the functor Hom(−,A∗) to (5.1) yields

0 −→ Hom(TPm−1 ,A∗) −→ Hom((A∗)m,A∗) ' Z[x]m
ι−→ Hom(A∗,A∗) ' Z[x] −→ 0, (5.2)

where ι((a0, . . . , am−1)) =
∑m−1
i=0 ai for (a0, . . . , am−1) ∈ Z[x]m. Thus the character lattice of TPm−1 is

Mm−1 = Hom(TPm−1 ,A∗) ' {(a0, . . . , am−1) ∈ Z[x]m |
m−1∑
i=0

ai = 0}.

Let U = {u1, . . . ,um} ⊂ Z[x]n and T = (t1, . . . , tn) a set of σ-indeterminates. In Section 5, we have

defined the affine toric P [σ]-variety associated with U as the closure of the image of the following map

θU : (A∗)n −→ Am,T 7→ TU = (Tu1 , . . . ,Tum).

To get a projective toric P [σ]-variety, we regard θU as a map to (A∗)m and compose with the homomor-

phism π : (A∗)m → TPm−1 to obtain

(A∗)n θU−→ (A∗)m π−→ TPm−1 ⊆ Pm−1. (5.3)

Definition 5.5. Given a finite set U ⊂ Z[x]n, the projective toric P [σ]-variety YU is the closure in

Pm−1 of the image of the map π ◦ θU from (5.3) under the topology in Definition 5.4.

For a finite set U = {u1, . . . ,um} ⊂ Z[x]n, we have defined the affine toric P [σ]-variety XU in

Section 5 and the projective toric P [σ]-variety YU in Definition 5.5. The following proposition reveals

the relationship between XU and YU . Let M = Z[x](U) and L = Syz(U), and we have an exact sequence

0 −→ L −→ Z[x]m
α−→M −→ 0, (5.4)

where α maps the standard base vector ei to ui, i = 1, . . . ,m. The vanishing ideal of XU is the binomial

P [σ]-ideal

JL = [Yu − Yv | u,v ∈ P [x]m with u− v ∈ L].

Proposition 5.6. For a finite set U ⊂ Z[x]n, the followings are equivalent:

(a) I(XU ) = JL = I(YU );

(b) JL is homogeneous;
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(c) There exists a vector v ∈ Z[x]n and g ∈ Z[x] such that 〈ui,v〉 = g for all ui ∈ U .

Proof. (a)⇔(b) is easy from the definitions.

(b)⇒(c). Assume that JL is homogeneous and take Yu−Yv ∈ JL for u = (ui)
m
i=1,v = (vi)

m
i=1 ∈ P [x]m

and u− v ∈ L. If
∑m
i=1 ui 6=

∑m
i=1 vi, then Yu,Yv ∈ JL which is impossible. So

∑m
i=1 ui =

∑m
i=1 vi. It

follows u · (1, . . . , 1) = 0 for all u ∈ L. Now apply the functor HomZ[x](−,Z[x]) to (5.4) and we obtain

an exact sequence

M∗ −→ Z[x]m −→ HomZ[x](L,Z[x]) −→ 0, (5.5)

where M∗ = HomZ[x](M,Z[x]). The above argument shows that (1, . . . , 1) ∈ Z[x]m maps to zero in

HomZ[x](L,Z[x]) and hence there exists ϕ ∈ M∗ such that ϕ(ui) = 1 for all i. By Lemma 2.13, there

exists a vector v ∈ Z[x]n and g ∈ Z[x] such that gϕ = ϕv = 〈−,v〉. In particular, 〈ui,v〉 = g for all

ui ∈ U .

(c)⇒(b). The vector v ∈ Z[x]n gives ϕv = 〈−,v〉 ∈ M∗ such that ϕv(ui) = g for all i. From (5.5),

(g, . . . , g) maps to zero in HomZ[x](L,Z[x]). It follows that for any u ∈ L,
∑m
i=1 gui = 0 and hence∑m

i=1 ui = 0. So JL is homogeneous.

Given U = {u1, . . . ,um} ⊂ Z[x]n, we set

Z[x]′(U) := {
m∑
i=1

aiui | ai ∈ Z[x],

m∑
i=1

ai = 0}.

Proposition 5.7. Let YU be the projective toric P [σ]-variety defined by U . Then

(a) The character lattice of the σ-torus of YU is Z[x]′(U).

(b) The σ-dimension of YU is the dimension of the smallest affine subspace of Q(x)m containing U .

More concretely,

σ-dim(YU ) =

{
rank(U)− 1, if U satisfies the conditions of Proposition 5.6;

rank(U), otherwise.

Proof. (a) The proof is similar to Proposition 2.1.6(a) in [3, p.58].

(b) By (a), the σ-dimension of YU equals to the rank of Z[x]′(U). Let U ′ = {u2 − u1, . . . ,um − u1}. It

is easy to check that Z[x]′(U) = Z[x](U ′). So rank(Z[x]′(U)) = rank(U ′) and the conclusions of (b) then

follow.

In the following we show that a projective toric P [σ]-variety is actually covered by a series of affine

toric P [σ]-varieties. Given a finite set U = {u1, . . . ,um} ⊂ Z[x]n, let YU ⊆ Pm−1 be the projective toric

P [σ]-variety defined by U and TYU
the σ-torus. For 1 6 i 6 m, let Oi = Pm−1\V(yi) which is an affine

open subset containing the σ-torus TPm−1 . We have

TYU
= YU ∩ TPm−1 ⊆ YU ∩Oi.

Since YU is the closure of TYU
in Pm−1, it follows that YU ∩Oi is the closure of TYU

in Oi ' Am−1. Thus

YU ∩ Oi is an affine toric P [σ]-variety. We will determinate the affine P [x]-semimodule associated with

YU ∩Oi. Oi ' Am−1 is given by

(a1, . . . , am) 7→ (a1/ai, . . . , ai−1/ai, ai+1/ai, . . . , am/ai).

Combining this with the map (5.3), we see that YU ∩Oi is the closure of the image of the map (A∗)m →
Am−1 given by

T 7→ (Tu1−ui , . . . ,Tui−1−ui ,Tui+1−ui , . . . ,Tum−ui). (5.6)

If we set Ui = U − ui := {uj − ui | j 6= i, 1 6 j 6 m} and Si = P [x](Ui), it follows

YU ∩Oi = XUi = SpecP [σ](k[Si]).

So we have the following proposition.
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Proposition 5.8. Let YU ⊆ Pm−1 for U = {u1, . . . ,um} ⊂ Z[x]n. Then the affine piece YU ∩ Oi is

the affine toric P [σ]-variety

YU ∩Oi = XUi = SpecP [σ](k[Si]),

where Ui = U − ui = {uj − ui | j 6= i, 1 6 j 6 m} and Si = P [x](Ui), i = 1, . . . ,m.

Besides describing the affine pieces YU ∩ Oi of YU ⊆ Pm−1, we can also describe how they patch

together. When i 6= j, YU ∩ Oi ∩ Oj consists of all points of YU ∩ Oi where yj/yi 6= 0. By (5.6), this

means those points where χuj−ui 6= 0. Thus

YU ∩Oi ∩Oj = SpecP [σ](k[Si])χuj−ui = SpecP [σ](k[Si]χuj−ui )

= SpecP [σ](k[Si + Z[x](ui − uj)]) ⊆ YU ∩Oi.

Also,

YU ∩Oi ∩Oj = SpecP [σ](k[Sj ])χui−uj = SpecP [σ](k[Sj ]χui−uj )

= SpecP [σ](k[Sj + Z[x](uj − ui)]) ⊆ YU ∩Oj .

Remark 5.9. One can check that Si + Z[x](ui − uj) = Sj + Z[x](uj − ui).

6 Abstract Toric P [σ]-Varieties

In this section, we will define abstract toric P [σ]-varieties through gluing affine toric P [σ]-varieties along

open subsets and generalize the irreducible invariant P [σ]-subvarieties-faces correspondence to abstract

toric P [σ]-varieties.

6.1 Gluing Together Affine P [σ]-Varieties

Suppose that we have a finite collection {Vα}α of affine P [σ]-varieties and for all pairs α, β we have open

subsets Vβα ⊆ Vα and isomorphisms gβα : Vβα ' Vαβ satisfying the following compatibility conditions:

• gαβ = g−1
βα for all α, β;

• gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ and gγβ ◦ gβα = gγα on Vβα ∩ Vγα for all α, β, γ.

Now we can glue together {Vα}α along open subsets Vαβ through isomorphisms gβα, and denote it by X.

Definition 6.1. The above X is called an abstract P [σ]-variety. Its open sets are those subsets that

restrict to open subsets in each Vα. Its closed sets are called P [σ]-subvarieties of X. We say that X is

irreducible if it is not the union of two proper P [σ]-subvarieties.

6.2 The Toric P [σ]-Variety of a Fan

Now we give the definition of abstract toric P [σ]-varieties.

Definition 6.2. An (abstract) toric P [σ]-variety is an irreducible abstract P [σ]-variety X containing

a σ-torus T as an open subset such that the action of T on itself extends to a σ-algebraic group action

of T on X.

It is clear that both affine toric P [σ]-varieties and projective toric P [σ]-varieties we have defined in the

previous sections are abstract toric P [σ]-varieties.

We will construct abstract toric P [σ]-varieties from fans. First we give the definition of a fan.

Definition 6.3. Let {Si}i be a finite collection of affine P [x]-semimodules in Z[x]n. We say that {Si}
is compatible if it satisfies:

(a) there exists a Z[x]-lattice M such that Smdi = M for all i;

(b) for all pairs (i, j), there exists u ∈ Si such that −u ∈ Sj and Si + Z[x](−u) = Sj + Z[x](u);
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(c) for all triples (i, j, k), by (b), there exist u ∈ Si,v ∈ Sj ,w ∈ Sk such that Si + Z[x](−u) =

Sj + Z[x](u), Sj + Z[x](−v) = Sk + Z[x](v), Sk + Z[x](−w) = Si + Z[x](w). Such u,v,w satisfy

Si + Z[x](−u) + Z[x](w) = Sj + Z[x](u) + Z[x](−v) = Sk + Z[x](v) + Z[x](−w).

Definition 6.4. A fan Σ is a finite collection of affine P [x]-semimodules {Si}i which is compatible. If

Σ is a fan, we write Σmd = Smdi for any i and define rank(Σ) = rank(Σmd).

Example 6.5. Let U = {u1, . . . ,um} ⊂ Z[x]n and Si = Z[x](U − ui), i = 1, . . . ,m. One can check

that Σ = {Si}mi=1 satisfies the above compatible conditions and thus is a fan.

We now show that how we can construct an abstract toric P [σ]-variety from a fan. Let Σ = {Si}i be

a fan. By Theorem 4.11, each Si in Σ gives an affine toric P [σ]-variety Xi = SpecP [σ](k[Si]). Let Si and

Sj be two different affine P [x]-semimodules in Σ, then by Definition 6.3(b), there exists u ∈ Σmd, such

that k[Si]χu = k[Sj ]χ−u , so we have an isomorphism

gji : (Xi)χu ' (Xj)χ−u , (6.1)

which is the identity map. For any distinct i, j, k, there exist u,v,w ∈ Σmd, such that

(Xi)χu ∩ (Xi)χ−w = SpecP [σ](Si + Z[x](−u) + Z[x](w)),

(Xj)χ−u ∩ (Xj)χv = SpecP [σ](Sj + Z[x](u) + Z[x](−v)),

(Xk)χ−v ∩ (Xk)χw = SpecP [σ](Sk + Z[x](v) + Z[x](−w)),

and by Definition 6.3(c),

(Xi)χu ∩ (Xi)χ−w = (Xj)χ−u ∩ (Xj)χv = (Xk)χ−v ∩ (Xk)χw .

So the compatibility conditions for gluing the affine toric P [σ]-varieties Xi along the open subsets (Xi)χu

are satisfied. Hence we obtain an abstract P [σ]-variety XΣ associated with the fan Σ.

Theorem 6.6. Let Σ = {Si}i be a fan in Z[x]n. Then the abstract P [σ]-variety XΣ constructed above

is a toric P [σ]-variety.

Proof. Let M = Σmd and TΣ = SpecP [σ](k[M ]). Then TΣ ⊆ Xi = SpecP [σ](k[Si]) as a σ-torus for all

i. These σ-tori are all identified by the gluing, so TΣ ⊆ XΣ as an open subset of XΣ. For each i, TΣ has

an action on Xi. The gluing isomorphisms gji in (6.1) are identity maps on each Xi ∩Xj , so the actions

are compatible on each Xi ∩Xj , and patch together to give a σ-algebraic group action of TΣ on XΣ. XΣ

is irreducible since all Xi are irreducible affine toric P [σ]-varieties. So by Definition 6.2, XΣ is a toric

P [σ]-variety.

Example 6.7. Let U = {u1, . . . ,um} ⊂ Z[x]n and Si = Z[x](U − ui), i = 1, . . . ,m. In Example 6.5,

we see that Σ = {Si}mi=1 is a fan. The projective toric P [σ]-variety YU defined by U is an abstract toric

P [σ]-variety associated with the fan Σ.

The irreducible invariant P [σ]-subvarieties-faces correspondence (Theorem 4.30) still applies to abstract

toric P [σ]-varieties constructed from fans through considering the gluing.

Suppose Σ = {Si}i is a fan in Z[x]n. Let

FΣ := {F | F � Si, Si ∈ Σ}

be the set of faces of affine P [x]-semimodules in Σ, and

FΣ(r) := {F ∈ FΣ | rank(F ) = rank(Σ)− r}.

Define an equivalence relationship in FΣ as follows: for Fi � Si, Fj � Sj , assume u ∈ Si such that

Si + Z[x](−u) = Sj + Z[x](u). Then Fi ∼ Fj if and only if there exists a face F of Si + Z[x](−u) such

that Fmdi = Fmdj = Fmd.

Let LΣ := FΣ/ ∼ and LΣ(r) := FΣ(r)/ ∼. For L′, L ∈ LΣ, L′ � L means that there exists a

representative F ′ of L′ and a representative F of L such that F ′ � F .

Let us prove some lemmas.
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Lemma 6.8. Let S be an affine P [x]-semimodule and F a face of S. Then for any u ∈ Fmd, F+Z[x](u)

is a face of S + Z[x](u).

Proof. Suppose a,b ∈ S+Z[x](u) such that a+b ∈ F +Z[x](u). Write a = a′+g1u, b = b′+g2u, and

a+b = c+ g3u, where a′,b′ ∈ S, c ∈ F, g1, g2, g3 ∈ Z[x]. Then a+b = a′+b′+ (g1 + g2)u = c+ g3u. So

a′+b′+(g1 +g2−g3)u = c. Since (g1 +g2−g3)u ∈ Fmd, we can write (g1 +g2−g3)u = d−e,d, e ∈ F . So

a′+b′+d = c+e ∈ F . It follows a′,b′ ∈ F . Thus a,b ∈ F+Z[x](u). Suppose a ∈ S+Z[x](u), g ∈ P [x]∗

such that ga ∈ F + Z[x](u). Write a = a′ + g1u, and ga = c + g2u, where a′ ∈ S, c ∈ F, g1, g2 ∈ Z[x].

Then ga = ga′ + gg1u = c + g2u. So ga′ + (gg1 − g2)u = c. Since (gg1 − g2)u ∈ Fmd, we can write

(gg1 − g2)u = d− e,d, e ∈ F . So ga′ + d = c + e ∈ F . It follows a′ ∈ F . Thus a ∈ F + Z[x](u). Hence

F + Z[x](u) is a face of S + Z[x](u).

Remark 6.9. From the above lemma, we see that if Σ = {Si}i is a fan and u ∈ Si such that

Si + Z[x](−u) = Sj + Z[x](u), then for Fi � Si, Fj � Sj , Fi ∼ Fj if and only if u ∈ Fmdi = Fmdj .

Lemma 6.10. Let F be a face of an affine P [x]-semimodule S. Then F = S ∩ Fmd.

Proof. Clearly, F ⊆ S ∩ Fmd. We need to show F ⊇ S ∩ Fmd. Suppose S = P [x]({u1, . . . ,um})
and F = P [x]({u1, . . . ,ur}). If w ∈ S ∩ Fmd, we can write w =

∑m
i=1 giui =

∑r
i=1 fiur, where

gi ∈ P [x], 1 6 i 6 m and fi ∈ Z[x], 1 6 i 6 r. Assume fi = (fi)+ − (fi)−, (fi)+, (fi)− ∈ P [x], 1 6 i 6 r.

Then we have
∑r
i=1(gi + (fi)−)ui +

∑m
i=r+1 giui =

∑r
i=1(fi)+ur ∈ F . Since F is a face of S, it follows∑m

i=r+1 giui ∈ F and if gi 6= 0, then ui ∈ F , r + 1 6 i 6 m. Because ui /∈ F, r + 1 6 i 6 m, then

gi = 0, r + 1 6 i 6 m. Thus w =
∑r
i=1 giui ∈ F .

Lemma 6.11. Let Σ = {Si}i be a fan. Then every L ∈ LΣ is also a fan.

Proof. We need to check that L satisfies the three compatible conditions (a), (b), (c) in Definition

6.3. For Fi, Fj ∈ L, assume Fi � Si, Fj � Sj and Si + Z[x](−u) = Sj + Z[x](u). Since Fi ∼ Fj , there

exists a face F of Si + Z[x](−u) such that Fmdi = Fmdj = Fmd. So (a) is satisfied. Since F is a face of

Si + Z[x](−u), we see u ∈ F and u ∈ Fmdi = Fmdj . To prove (b), because of the symmetry, we just need

to show Fi + Z[x](−u) ⊆ Fj + Z[x](u), or Fi ⊆ Fj + Z[x](u). Since Fi ⊆ Si ⊆ Sj + Z[x](u), for a ∈ Fi,
we can write a = b + gu, where b ∈ Sj , g ∈ Z[x]. Then b = a − gu ∈ Fmdj ∩ Sj . Therefore, by Lemma

6.10, b ∈ Fj . Hence a ∈ Fj + Z[x](u). So (b) is satisfied. To prove (c), suppose Fi ∼ Fj ∼ Fk ∈ L and

Fi � Si, Fj � Sj , Fk � Sk. Assume u,v,w ∈ Σmd such that Si + Z[x](−u) + Z[x](−v) = Sj + Z[x](u) +

Z[x](−w) = Sk +Z[x](v) +Z[x](w). As above, u,v,w ∈ Fmdi = Fmdj = Fmdk . For the symmetry, we just

need to prove Fi+Z[x](−u)+Z[x](−v) ⊆ Fj+Z[x](u)+Z[x](−w), or Z[x](−v) ⊆ Fj+Z[x](u)+Z[x](−w).

Suppose gv ∈ Z[x](−v). Since gv ∈ Sj + Z[x](u) + Z[x](−w), we can write gv = b + h1u + h2w, where

b ∈ Sj , h1, h2 ∈ Z[x]. Then b = gv − h1u− h2w ∈ Fmdj ∩ Sj . Therefore, by Lemma 6.10 again, b ∈ Fj .
Hence gv ∈ Fj + Z[x](u) + Z[x](−w). So (c) is satisfied. Hence L is a fan.

Now we give the irreducible invariant P [σ]-subvarieties-faces correspondence theorem.

Theorem 6.12. Let XΣ be the toric P [σ]-variety associated with a fan Σ = {Si}i and assume that TΣ

is the σ-torus of XΣ. Then there is a one-to-one correspondence between elements of LΣ and irreducible

TΣ-invariant P [σ]-subvarieties of XΣ. Let L ∈ LΣ. If we denote the irreducible TΣ-invariant P [σ]-

subvariety associated with L by D(L), then D(L) ' XL which is the toric P [σ]-variety associated with

the fan L.

Proof. For an element L = {Fi}i of LΣ, each Fi � Si corresponds to an irreducible TΣ-invariant P [σ]-

subvariety of Xi = SpecP [σ](k[Si]). The gluing of Xi induces a gluing of XFi = SpecP [σ](k[Fi]). The

resulted P [σ]-variety is exactly XL since L is a fan by Lemma 6.11.

For the converse, suppose that Y is an irreducible TΣ-invariant P [σ]-subvariety of XΣ. Then Y ∩Xi

is an irreducible TΣ-invariant P [σ]-subvariety of Xi, thus there exists a face Fi of Si such that Y ∩Xi =

SpecP [σ](k[Fi]). The gluing of Y ∩ Xi is induced by the gluing of Xi. Therefore if Si + Z[x](−u) =

Sj +Z[x](u), then Fi+Z[x](−u) = Fj +Z[x](u), and u ∈ Fmdi = Fmdj . Let F = Fi+Z[x](−u) which is a

face of Si + Z[x](−u) by Lemma 6.8. Obviously, Fmd = Fmdi = Fmdj . Therefore, Fi ∼ Fj . So L = {Fi}i
is an element of LΣ.



Jie Wang Sci China Math 23

7 Divisors on Toric P [σ]-Varieties

In algebraic geometry, the divisor theory is a very useful tool to study the properties of algebraic varieties.

In this section, we will define divisors and divisor class modules for toric P [σ]-varieties by virtue of the

irreducible invariant P [σ]-subvarieties-faces correspondence. Moreover, we will establish connections

between the properties of toric P [σ]-varieties and divisor class modules.

First let us give a description of faces of affine P [x]-semimodules using supporting hyperplanes. Let S

be an affine P [x]-semimodule and M = Smd. Let M∗ = HomZ[x](M,Z[x]). Given ϕ ∈M∗, ϕ 6= 0, let

Hϕ := {u ∈M | ϕ(u) = 0} ⊆M

which is called the hyperplane defined by ϕ and

H+
ϕ := {u ∈M | ϕ(u) > 0} ⊆M

which is called the closed half-space defined by ϕ. If S ⊆ H+
ϕ , then Hϕ is called a supporting hyperplane

of S and H+
ϕ is called a supporting half-space.

Proposition 7.1. Let S be an affine P [x]-semimodule and M = Smd. Then F is a proper face of S if

and only if there exists a ϕ ∈M∗ such that H+
ϕ is a supporting half-space of S and F = Hϕ ∩ S.

Proof. For the necessity, suppose S = P [x](U) = P [x]({u1, . . . ,um}) ⊆ Z[x]n and rank(S) = t. Let

L = Syz(U) and rank(L) = m − t by Lemma 2.8. Then the map ei 7→ ui, 1 6 i 6 m ({ei}mi=1 is the

standard basis of Z[x]m) gives the following exact sequence:

0 −→ L −→ Z[x]m −→M −→ 0.

Without loss of generality, assume F = P [x]({u1, . . . ,ur}) and rank(F ) = s < t. Let V = {ϕ ∈M∗ | F =

Hϕ ∩ S}. If A = {a1, . . . ,am−t} is a basis of L and regard A as a matrix with columns ai, 1 6 i 6 m− t,
then

M∗ ' {ϕ = (ϕ1, . . . , ϕm)τ ∈ Z[x]m | Aϕ = 0}

and

V ' {ϕ = (0, . . . , 0, ϕr+1, . . . , ϕm)τ ∈ Z[x]m | Aϕ = 0}.

So V is a free Z[x]-module and rank(V ) = (m − r) − ((m − t) − (r − s)) = t − s > 0 by Lemma 2.8.

We can assume that A is a trapezoidal matrix. Because F is a face, we can choose ϕ ∈ V such that

ϕ(ui) 6= 0, i = r+1, . . . ,m. Then F = Hϕ∩S. We claim that ϕ(ui) have the same sign for i = r+1, . . . ,m.

Otherwise, suppose that ϕ(ui) > 0 and ϕ(uj) < 0, i, j > r + 1. Then ϕ(ϕ(ui)uj − ϕ(uj)ui) = 0, thus

ϕ(ui)uj − ϕ(uj)ui ∈ F and it follows ui,uj ∈ F which is a contradiction. Therefore, without loss of

generality, we can assume that ϕ(ui) > 0, i = r+ 1, . . . ,m and hence H+
ϕ is a supporting half-space of S.

For the sufficiency, suppose thatH+
ϕ is a supporting half-space of S and F = Hϕ∩S, where ϕ ∈M∗, ϕ 6=

0. It is clear that F is a P [x]-semimodule. Let u1,u2 ∈ S, g1, g2 ∈ P [x]∗ such that g1u1 + g2u2 ∈ F .

Then ϕ(g1u1 + g2u2) = g1ϕ(u1) + g2ϕ(u2) = 0. Since u1,u2 ∈ S, ϕ(u1) > 0 and ϕ(u2) > 0. We must

have ϕ(u1) = ϕ(u2) = 0. It follows u1,u2 ∈ F and hence F is a face as desired.

Suppose that S is an affine P [x]-semimodule. If F is a proper face of S, let V (F ) := {ϕ ∈ M∗ |
F = Hϕ ∩ S}. From the proof of the above proposition, we know that V (F ) is a free Z[x]-module and

rank(V (F )) = rank(S)− rank(F ). In particular, if F is a facet of S, then V (F ) is a free Z[x]-module of

rank one which has a basis {ϕF } with S ⊆ H+
ϕF

. In this case, we call ϕF the standard normal vector of

F .

Let Σ = {Si}i be a fan and M = Σmd. We will define a valuation on k(M) for every facet of Si. First

consider the affine case. Let S be an affine P [x]-semimodule and F a facet of S. Assume that ϕF is the

standard normal vector of F . Define a valuation νF on k[S] as follows:

νF : k[S]→ Z[x], f =
∑
u

αuχ
u 7→ min

u
(ϕF (u)), f ∈ k[S].
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Then extend the valuation to k(S) := Frac(k[S]) by defining νF ( fg ) = νF (f)− νF (g), for f
g ∈ k(S). Note

that for u ∈ S, νF (χu) = ϕF (u) and if u ∈ F, νF (χu) = 0, if u ∈ S\F, νF (χu) > 0.

Now let Σ = {Si}i be a fan in Z[x]n. For any L ∈ LΣ(1), if L has only one element F , then F is a facet of

some Si, and we define νL = νF ; if L has more than one element, choose one for example Fi and we define

νL = νFi . In the latter case, for Fi ∼ Fj ∈ L, suppose Fi � Si, Fj � Sj and Si+Z[x](−u) = Sj +Z[x](u).

By the definition of the equivalence relationship ∼, there exists a facet F of Si + Z[x](−u) such that

Fmdi = Fmdj = Fmd. It follows that Fi, Fj and F have the same standard normal vector and hence

νFi
= νFj

= νF . So νL is independent of the choice of Fi.

Let XΣ be the toric P [σ]-variety associated with the fan Σ and assume that TΣ is the σ-torus of

XΣ. By Theorem 6.12, each L ∈ LΣ(1) corresponds to a σ-codimension one irreducible TΣ-invariant

P [σ]-subvariety D(L) of XΣ, which is called a prime divisor of XΣ.

Definition 7.2. Div(XΣ) is the free Z[x]-module generated by the prime divisors of XΣ as a basis. A

Weil divisor is an element of Div(XΣ) which is of the form
∑
L∈LΣ(1) aLD(L).

Let D =
∑
L∈LΣ(1) aLD(L), then D is said to be effective, written as D > 0, if aL > 0 for all L.

Definition 7.3. Let Σ = {Si}i be a fan and XΣ the toric P [σ]-variety associated with Σ. Assume

M = Σmd.

1. The divisor of f ∈ k(M) := Frac(k[M ]) is defined to be div(f) =
∑
L νL(f)D(L) where L ∈ LΣ(1).

2. A divisor of the form div(f) for some f ∈ k(M) is called a principal divisor, and the set of all

principal divisors is denoted by Div0(XΣ).

3. For u ∈ M , div(χu) =
∑
L∈LΣ(1) ϕL(u)D(L) is called a characteristic divisor, and the set of all

characteristic divisors is denoted by Divc(XΣ).

4. Divisors D and E are said to be linearly equivalent, written D ∼ E, if their difference is a principal

divisor, i.e. D − E = div(f) ∈ Div0(XΣ) for some f ∈ k(M).

If f, g ∈ k(M), then div(fg) = div(f) + div(g) and div(fa) = a div(f), for a ∈ Z[x]. Thus Div0(XΣ) is

a Z[x]-submodule of Div(XΣ). Similarly, Divc(XΣ) is also a Z[x]-submodule of Div(XΣ).

If D =
∑
i aiDi is a Weil divisor on XΣ and U ⊆ XΣ is a nonempty open subset, then D|U =∑

Di∩U 6=∅ aiDi ∩ U is called the restriction of D on U .

Definition 7.4. A Weil divisor D on a toric P [σ]-variety XΣ is Cartier if it is locally characteristic,

meaning that XΣ has an open cover {Ui}i∈I such that D|Ui
is characteristic on Ui for every i ∈ I, namely

there exists ui ∈ M , such that D|Ui
= div(χui)|Ui

for i ∈ I, and we call {(Ui,ui)}i∈I the local data for

D.

We can check that all of the Cartier divisors onXΣ form a Z[x]-module CDiv(XΣ) satisfying Divc(XΣ) ⊆
CDiv(XΣ) ⊆ Div(XΣ).

Definition 7.5. Let XΣ be the toric P [σ]-variety of a fan Σ = {Si}i. Its class module is

Cl(XΣ) := Div(XΣ)/Divc(XΣ)

and its Picard module is

Pic(XΣ) := CDiv(XΣ)/Divc(XΣ).

Obviously, Pic(XΣ) ↪→ Cl(XΣ) as Z[x]-modules.

Example 7.6. Let U = {e1, . . . , en} be the standard basis of Z[x]n. Obviously, the toric P [σ]-variety

XU defined by U is the σ-affine space An. The corresponding affine P [x]-semimodule S = P [x](U) =

P [x]n has n facets whose standard normal vectors are {ϕ1, . . . , ϕn} respectively with ϕi(ei) = 1, ϕi(ej) =

0, j 6= i, 1 6 i, j 6 n. Suppose that the corresponding prime divisors are {D1, . . . , Dn} respectively. Then

for each i, div(χei) = Di. Thus

Cl(An) = Z[x]D1 ⊕ · · · ⊕ Z[x]Dn/(D1, . . . , Dn) = 0.
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Example 7.7. Suppose that U = {u1 = (x, 1),u2 = (x, 2),u3 = (x, 3)} and XU is the affine toric

P [σ]-variety defined by U . The corresponding affine P [x]-semimodule S = P [x](U) has two facets F1 =

P [x](u1) and F2 = P [x](u3), and we denote their corresponding prime divisors by D1 and D2 respectively.

The standard normal vector of F1 is ϕ1 with ϕ1(u1) = 0, ϕ1(u2) = 1, ϕ1(u3) = 2. The standard normal

vector of F2 is ϕ2 with ϕ2(u1) = 2, ϕ1(u2) = 1, ϕ1(u3) = 0. So div(χu1) = 2D2, div(χu2) = D1 +D2 and

div(χu3) = 2D1. Thus

Cl(XU ) = Z[x]D1 ⊕ Z[x]D2 ⊕ Z[x]D3/(2D2, D1 +D2, 2D1) ' Z[x]/(2).

Example 7.8. Suppose that U = {u1 = (x, 1, 1),u2 = (1, x, 1),u3 = (1, 1, x),u4 = (1, 1, 1)} and XU

is the affine toric P [σ]-variety defined by U . The corresponding affine P [x]-semimodule S = P [x](U)

has three facets F1 = P [x]({u2,u3}) and F2 = P [x]({u1,u3}), F3 = P [x]({u1,u2}), and we denote

their corresponding prime divisors by D1, D2 and D3 respectively. The standard normal vector of F1

is ϕ1 with ϕ1(u1) = x + 2, ϕ1(u2) = ϕ(u3) = 0, ϕ1(u4) = 1. The standard normal vector of F2 is ϕ2

with ϕ2(u1) = ϕ(u3) = 0, ϕ1(u2) = x + 2, ϕ1(u4) = 1. The standard normal vector of F3 is ϕ3 with

ϕ2(u1) = ϕ(u2) = 0, ϕ1(u3) = x + 2, ϕ1(u4) = 1. So div(χu1) = (x + 2)D1, div(χu2) = (x + 2)D2,

div(χu3) = (x+ 2)D3 and div(χu4) = D1 +D2 +D3. Thus

Cl(XU ) =

4⊕
i=1

Z[x]Di/((x+ 2)D1, (x+ 2)D2, (x+ 2)D3, D1 +D2 +D3)

' Z[x]/(x+ 2)⊕ Z[x]/(x+ 2).

Example 7.9. The σ-projective space P2 is defined by U = {0, e1, e2}, where {e1, e2} is the stan-

dard basis of Z[x]2. The affine P [σ]-semimodules associated with P2 are S1 = P [x]({e1, e2}), S2 =

P [x]({−e1, e2 − e1}) and S3 = P [x]({−e2, e1 − e2}). S1 has facets F1 = P [x](e1) and F2 = P [x](e2). S2

has facets F3 = P [x](−e1) and F4 = P [x](e2−e1). S3 has facets F5 = P [x](−e2) and F6 = P [x](e1−e2).

F1 ∼ F3 has the standard normal vector ϕ1 with ϕ1(e1) = 0, ϕ1(e2) = 1. F2 ∼ F5 has the standard

normal vector ϕ2 with ϕ2(e1) = 1, ϕ2(e2) = 0. F4 ∼ F6 has the standard normal vector ϕ3 with

ϕ3(e1) = −1, ϕ3(e2) = −1. Denote the corresponding prime divisors by D1, D2, D3 respectively. Then

div(χe1) = D2 −D3, div(χe2) = D1 −D3. Thus

Cl(P2) = Z[x]D1 ⊕ Z[x]D2 ⊕ Z[x]D3/(D2 −D3, D1 −D3) ' Z[x].

In the same way, we can show that Cl(Pn) ' Z[x], n > 1.

Proposition 7.10. Let X = SpecP [σ](k[S]) be an affine toric P [σ]-variety. Then

(a) Every Cartier divisor on X is a characteristic divisor;

(b) Pic(X) = 0.

Proof. (a) Let H be the intersection of all faces of S which is still a face of S. Then D(H) ⊆⋂
F∈FS(1)D(F ). Fix a point p ∈ D(H). Since D is Cartier, it is locally characteristic, and in particular

is characteristic in a neighbourhood U of p, i.e. D|U = div(χu)|U for some u ∈ Smd. Since p ∈ U ∩D(F )

for all F ∈ FS(1), we have D = div(χu).

(b) It follows from (a).

An affine P [x]-semimodule S is said to be compact if
⋂
F∈FS(1) F

md = {0}.

Proposition 7.11. Let XΣ be the toric P [σ]-variety of a fan Σ and M = Σmd. If Σ contains a compact

affine P [x]-semimodule, then Pic(XΣ) is a Z[x]-lattice.

Proof. Because of Lemma 2.7, it suffices to show that if D is a Cartier divisor and gD is the divisor

of a character for some g ∈ P [x]∗, then the same is true for D. Write D =
∑
L aLD(L) and assume

that gD = div(χu),u ∈ M . Let S be a compact affine P [x]-semimodule in Σ. Since D is Cartier, its

restriction to XS := SpecP [σ](k[S]) is also Cartier. Assume that D|XS
=

∑
F∈FS(1) aFD(F ). This is
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characteristic on XS by Proposition 7.10, so there exists u′ ∈ M such that D|XS
= div(χu′)|XS

. This

implies aF = ϕF (u′), for all F ∈ FS(1). On the other hand, gD = div(χu) implies gaL = ϕL(u),

for all L ∈ LΣ(1). It follows ϕF (gu′) = gaF = ϕF (u), for all F ∈ FS(1), i.e. ϕF (gu′ − u) = 0

for all F ∈ FS(1). So there exists gF ∈ P [x]∗ such that gF (gu′ − u) ∈ Fmd, for all F ∈ FS(1). Thus

(
∏
F∈FS(1) gF )(gu′−u) ∈

⋂
F∈FS(1) F

md. Since S is compact,
⋂
F∈FS(1) F

md = {0} and hence gu′−u = 0.

It follows D = div(χu′).

Definition 7.12. A toric P [σ]-variety X is smooth if Cl(X) = Pic(X).

Definition 7.13. Suppose that S is an affine P [x]-semimodule and M = Smd. For a facet F of S,

assume ϕF is the standard normal vector of F . If {ϕF | F ∈ FS(1)} forms a basis of the free module

M∗ = HomZ[x](M,Z[x]), then we say that S is smooth. Let Σ be a fan. If for every S ∈ Σ, S is smooth,

then we say that Σ is smooth.

In the algebraic case, the smoothness of a toric variety is equivalent to the smoothness of the corre-

sponding fan. We will generalize this result to the difference case. Firstly, let us prove some lemmas.

Lemma 7.14. Let XΣ be the toric P [σ]-variety of a fan Σ and Z = SpecP [σ](k[S]) for some S ∈ Σ.

Let D1, . . . , Ds be the irreducible components of XΣ\Z that are prime divisors. Then the sequence

s∑
j=1

Z[x]Dj −→ Cl(XΣ) −→ Cl(Z) −→ 0

is exact, where the first map sends
∑s
j=1 ajDj to its divisor class in Cl(XΣ) and the second is induced

by the restriction to Z.

Proof. Let D′ =
∑
i aiD

′
i ∈ Cl(Z) with D′i a prime divisor on Z. Then the closure D′i of D′i in XΣ is

a prime divisor of XΣ and D =
∑
i aiD

′
i satisfies D|Z = D′. Hence Cl(XΣ)→ Cl(Z) is surjective.

Since each Dj restricts to 0 in Div(Z), the composition of the two maps is trivial. To prove the

exactness, suppose that [D] ∈ Cl(XΣ) restricts to 0 in Cl(Z). This means that D|Z is the divisor of some

χu ∈ k[Smd] = k[Σmd], i.e. D|Z = div(χu)|Z . This implies that D − div(χu) is supported on X\Z, i.e.

D − div(χu) ∈
∑s
j=1 Z[x]Dj . So [D] ∈ [

∑s
j=1 Z[x]Dj ] as desired.

Lemma 7.15. Let M be a free Z[x]-lattice and M∗ = HomZ[x](M,Z[x]) its dual Z[x]-lattice. For a

subset {ϕ1, . . . , ϕs} ⊆M∗, define a map

Φ: Z[x]s −→M∗, (a1, . . . , as) 7→
s∑
i=1

aiϕi.

The dual map of Φ is

Φ∗ : HomZ[x](M
∗,Z[x]) 'M −→ HomZ[x](Z[x]s,Z[x]) ' Z[x]s

with Φ∗(m) : Z[x]s → Z[x],a 7→ Φ(a)(m), for every m ∈ M . Then Φ is an isomorphism if and only if

Φ∗ is an isomorphism.

Proof. Suppose Φ∗ is an isomorphism. For any a = (a1, . . . , as) ∈ ker(Φ), and m ∈ M , Φ∗(m)(a) =

Φ(a)(m) = 0, i.e. Φ∗(M)(a) = 0. Since Φ∗ is surjective, we have Φ∗(M) = HomZ[x](Z[x]s,Z[x]). So

a = 0. Thus ker(Φ) = 0 and Φ is injective. Since Φ∗ is an isomorphism, rank(M∗) = rank(M) = s.

Therefore, {ϕ1, . . . , ϕs} is linearly independent and generates M∗ ⊗ Q(x) as a basis. To prove that Φ

is also surjective, we only need to show that Φ(Z[x]s) is Z[x]-saturated, i.e. for any g ∈ Z[x]∗ and

ϕ ∈ M∗, if gϕ ∈ Φ(Z[x]s), then ϕ ∈ Φ(Z[x]s). Assume a = (a1, . . . , as) and Φ(a) = gϕ. Let {ei}si=1

be the standard basis of Z[x]s. Since Φ∗ is surjective, then for every i, there exists an mi ∈ M such

that Φ∗(mi)(ei) = 1,Φ∗(mi)(ej) = 0, j 6= i. Then gϕ(mi) = Φ(a)(mi) =
∑s
i=1 aiϕ(mi) = ai. Let

a′ = (ϕ(m1), . . . , ϕ(ms)). Then gΦ(a′) = Φ(a) = gϕ and Φ(a′) = ϕ. Hence Φ is an isomorphism.

Since Φ∗∗ = Φ, the converse follows easily.

Theorem 7.16. Let XΣ be the toric P [σ]-variety of a fan Σ. Assume M = Σmd is a free Z[x]-module.

Then XΣ is smooth if and only if Σ is smooth.
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Proof. By definition, XΣ is smooth if and only if Cl(X) = Pic(X) which is equivalent to the fact

that every Weil divisor on XΣ is Cartier. For the necessity, assume that every Weil divisor on XΣ is

Cartier. By Lemma 7.14, for any S ∈ Σ, every Weil divisor on XS := SpecP [σ](k[S]) is Cartier. Then by

Proposition 7.10, Cl(XS) = Pic(XS) = 0. Since we have the following exact sequence:

0 −→M
θ−→ Div(XS) −→ Cl(XS) −→ 0,

where θ maps u ∈ M to the divisor of χu, we know that θ is an isomorphism. If {ϕF | F ∈ FS(1)} =

{ϕ1, . . . , ϕs}, then this map becomes

θ : M −→ Z[x]s,m 7→ (ϕ1(m), . . . , ϕs(m)),∀m ∈M. (7.1)

Now define Φ: Z[x]s →M∗ by Φ(a1, . . . , as) =
∑s
i=1 aiϕi. The dual map

Φ∗ : M ' HomZ[x](M
∗, Z[x]) −→ HomZ[x](Z[x]s,Z[x]) ' Z[x]s

is easily seen to be (7.1). Since Φ∗ is an isomorphism, then Φ is an isomorphism by Lemma 7.15. The

injectivity of Φ implies that {ϕ1, . . . , ϕs} is linearly independent. The surjectivity of Φ implies that

{ϕ1, . . . , ϕs} generates M∗ as a Z[x]-module. So {ϕ1, . . . , ϕs} is a basis of M∗ and hence S is smooth.

So Σ is smooth.

Every step in the above proof is invertible, so the sufficiency follows.

Example 7.17. The σ-projective space Pn is defined by U = {0, e1, . . . , en}, where {ei}ni=1 is the

standard basis of Z[x]n. Let S0 = P [x]({e1, . . . , en}) and Si = P [x](U − ei), i = 1, . . . , n. The fan

associated with Pn is {Si}ni=0 by Example 6.7. It is easy to check that S0 = P [x]({e1, . . . , en}) and Si =

P [x](U − ei), i = 1, . . . , n are smooth. So Pn is smooth by Theorem 7.16 and Pic(Pn) = Cl(Pn) ' Z[x].

8 Conclusions

In this paper, we first introduce the concept of P [σ]-varieties and initiate the study of toric P [σ]-varieties.

We define affine toric P [σ]-varieties and establish the connections between affine toric P [σ]-varieties and

affine P [x]-semimodules. We show that the category of affine toric P [σ]-varieties with toric morphisms is

antiequivalent to the category of affine P [x]-semimodules with P [x]-semimodule morphisms. Moreover,

we show that there is a one-to-one correspondence between the irreducible T -invariant P [σ]-subvarieties

of an affine toric P [σ]-variety X and the faces of the corresponding affine P [x]-semimodule, where T is

the σ-torus of X. Besides, there is also a one-to-one correspondence between the T -orbits of the affine

toric σ-variety X and the faces of the corresponding affine P [x]-semimodule.

We also define projective toric P [σ]-varieties in a σ-projective space and define abstract toric P [σ]-

varieties associated with a fan by gluing affine toric P [σ]-varieties. It turns out that both affine toric

P [σ]-varieties and projective toric P [σ]-varieties are abstract toric P [σ]-varieties. The irreducible invari-

ant P [σ]-subvarieties-faces correspondence is generalized to abstract toric P [σ]-varieties. By virtue of

the correspondence, we can develop a divisor theory on abstract toric P [σ]-varieties and establish the

connections between the properties of a toric P [σ]-variety and its divisor class modules.

The divisor theory for toric P [σ]-varieties developed in this paper is not complete. In algebraic geom-

etry, many applications of the divisor theory on algebraic varieties, in particular on toric varieties, are

revealed. We hope that we can give more applications of the divisor theory on toric P [σ]-varieties in the

future work.
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